Short-wall block backfill mining (SBBM) technology is an effective method to solve the environmental problems in the mining process. Based on the technical characteristics of SBBM technology and the physical similarity criterion, the physical similarity models for comparing the control effects of water-flowing fracture (WFF) development using short-wall block cave mining (SBCM) and SBBM were established, and the deformation and the WFF development of overlying strata above gob were monitored. The test results determined that the composite materials of 5 mm thick pearl sponge+5 mm thick sponge+10 mm thick paper+6 mm thick board were adopted as the similar backfill materials by comparing the stress-strain curves between the similar backfill materials and the original gangue sample. When the backfilling body was filled into the gob, it would be the permanent bearing body, which bore the load of the overlying strata accompanied with the protective coal pillar. At the same time, the backfilling body also filled the collapse space of overlying strata, which was equivalent to reduce the mining height, and effectively reduced the subsidence and failure height of the overlying strata. Compared with SBCM, the test results showed that the maximum vertical deformation, the height of water-flowing fractured zone, and activity range of overlying strata using SBBM were reduced by 91.4%, 82.5%, and 64.9%, respectively. SBBM had a significant control effect on strata damage and WFF development, which could realize the purpose of water resource protection in coal mines.
In the process of solid backfill mining, the leaching of heavy metal ions from the gangue backfill body in the mined-out area can pose potential risk of polluting water resources in the mine. Accordingly, based on the environment of the gangue backfill body, the migration model of heavy metal ions from the gangue backfill body was established to reveal the pollution mechanism of water resources by the gangue backfill body in the mined-out area. The main factors that affect the migration of heavy metal ions were analyzed, and prevention and control techniques for the leaching and migration of heavy metal ions from gangue backfill bodies were proposed. Research showed that the heavy metal ions in gangue backfill bodies were subjected to the coupled action of seepage, concentration, and stress and then driven by water head pressure and gravitational potential energy to migrate downward along the pore channels in the floor, during which mine water served as the carrier. The migration distance of heavy metal ions increased with time. According to the migration rate, the migration process can be subdivided into three phases: the rapid migration phase (0–50 years), the slow migration phase (50–125 years), and the stable phase (125–200 years). It was concluded that the leaching concentration of heavy metal ions, the particle size of gangue, the permeability of floor strata, and the burial depth of coal seams were the main influencing factors of the migration of heavy metal ions. From the two perspectives of heavy metal ion leaching and migration, prevention and control techniques for the leaching and migration of heavy metal ions from gangue backfill bodies were proposed to protect water resources in mining area. The present study is of great significance to realizing utilization of solid waste in mines and protecting the ecological environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.