Callbacks are essential in many programming environments, but drastically complicate program understanding and reasoning because they allow to mutate object's local states by external objects in unexpected fashions, thus breaking modularity. The famous DAO bug in the cryptocurrency framework Ethereum, employed callbacks to steal $150M. We define the notion of Effectively Callback Free (ECF) objects in order to allow callbacks without preventing modular reasoning.An object is ECF in a given execution trace if there exists an equivalent execution trace without callbacks to this object. An object is ECF if it is ECF in every possible execution trace. We study the decidability of dynamically checking ECF in a given execution trace and statically checking if an object is ECF. We also show that dynamically checking ECF in Ethereum is feasible and can be done online. By running the history of all execution traces in Ethereum, we were able to verify that virtually all existing contract executions, excluding these of the DAO or of contracts with similar known vulnerabilities, are ECF. Finally, we show that ECF, whether it is verified dynamically or statically, enables modular reasoning about objects with encapsulated state.
Abstractcvc5 is the latest SMT solver in the cooperating validity checker series and builds on the successful code base of CVC4. This paper serves as a comprehensive system description of cvc5 ’s architectural design and highlights the major features and components introduced since CVC4 1.8. We evaluate cvc5 ’s performance on all benchmarks in SMT-LIB and provide a comparison against CVC4 and Z3.
The operations of expansion and refinement on nondeterministic matrices (Nmatrices) are composed to form a new operation called rexpansion. Properties of this operation are investigated, together with their effects on the induced consequence relations. Using rexpansions, a semantic method for obtaining conservative extensions of (N)matrix-defined logics is introduced and applied to fragments of the classical two-valued matrix, as well as to other many-valued matrices and Nmatrices. The main application of this method is the construction and investigation of truth-preserving ¬-paraconsistent conservative extensions of Gödel fuzzy logic, in which ¬ has several desired properties. This is followed by some results regarding the relations between the constructed logics.
Many SMT solvers implement efficient SAT-based procedures for solving fixed-size bit-vector formulas. These approaches, however, cannot be used directly to reason about bit-vectors of symbolic bit-width. To address this shortcoming, we propose a translation from bit-vector formulas with parametric bit-width to formulas in a logic supported by SMT solvers that includes non-linear integer arithmetic, uninterpreted functions, and universal quantification. While this logic is undecidable, this approach can still solve many formulas by capitalizing on advances in SMT solving for non-linear arithmetic and universally quantified formulas. We provide several case studies in which we have applied this approach with promising results, including the bit-width independent verification of invertibility conditions, compiler optimizations, and bit-vector rewrites. Symbol SMT-LIB Syntax
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.