Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients.
Transporter ProP of Escherichia coli (ProPEc) senses extracellular osmolality and mediates osmoprotectant uptake when it is rising or high. A replica of the ProPEc C terminus (Asp 468 -Arg 497 ) forms an intermolecular ␣-helical coiled-coil. This structure is implicated in the osmoregulation of intact ProPEc, in vivo. Like that from Corynebacterium glutamicum (ProPCg), the ProP orthologue from Agrobacterium tumefaciens (ProPAt) sensed and responded to extracellular osmolality after expression in E. coli. The osmotic activation profiles of all three orthologues depended on the osmolality of the bacterial growth medium, the osmolality required for activation rising as the growth osmolality approached 0.7 mol/kg. Thus, each could undergo osmotic adaptation. The proportion of cardiolipin in a polar lipid extract from E. coli increased with extracellular osmolality so that the osmolality activating ProPEc was a direct function of membrane cardiolipin content. Group A ProP orthologues (ProPEc, ProPAt) share the C-terminal coiled-coil domain and were activated at low osmolalities. Like variant ProPEc-R488I, in which the C-terminal coiled-coil is disrupted, ProPEc derivatives that lack the coiled-coil and Group B orthologue ProPCg required a higher osmolality to activate. The amplitude of ProPEc activation was reduced 10-fold in its deletion derivatives. The coiled-coil structure is not essential for osmotic activation of ProP per se. However, it tunes Group A orthologues to osmoregulate over a low osmolality range. Coiled-coil lesions may impair both coiled-coil formation and interaction of ProPEc with amplifier protein ProQ. Cardiolipin may contribute to ProP adaptation by altering bulk membrane properties or by acting as a ProP ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.