The N-end rule pathway is a regulated proteolytic system that targets proteins containing destabilizing N-terminal residues (N-degrons) for ubiquitination and proteasomal degradation in eukaryotes. The N-degrons of type 1 substrates contain an N-terminal basic residue that is recognized by the UBR box domain of the E3 ubiquitin ligase UBR1. We describe structures of the UBR box of Saccharomyces cerevisiae UBR1 alone and in complex with N-degron peptides, including that of the cohesin subunit Scc1, which is cleaved and targeted for degradation at the metaphase-anaphase transition. The structures reveal a previously unknown protein fold that is stabilized by a novel binuclear zinc center. N-terminal arginine, lysine or histidine side chains of the N-degron are coordinated in a multispecific binding pocket. Unexpectedly, the structures together with our in vitro biochemical and in vivo pulse-chase analyses reveal a previously unknown modulation of binding specificity by the residue at position 2 of the N-degron.
In-depth characterization of RNA polymerase II preinitiation complexes remains an important and challenging goal. We used quantitative mass spectrometry to explore context-dependent Saccharomyces cerevisiae preinitiation complex formation at the HIS4 promoter reconstituted on naked and chromatinized DNA templates. The transcription activators Gal4-VP16 and Gal4-Gcn4 recruited a limited set of chromatin-related coactivator complexes, namely the chromatin remodeler Swi/Snf and histone acetyltransferases SAGA and NuA4, suggesting that transcription stimulation is mediated through these factors. Moreover, the two activators differentially recruited the coactivator complexes, consistent with specific activator-coactivator interactions. Chromatinized templates suppressed recruitment of basal transcription factors, thereby amplifying the effect of activators, compared with naked DNA templates. This system is sensitive, highly reproducible, and easily applicable to mapping the repertoire of proteins found at any promoter.
Gcn4p is a well-characterized bZIP transcription factor that activates more than 500 genes encoding amino acids and purine biosynthesis enzymes, and many stressresponse genes under various stress conditions. Under these stresses, it had been shown that transcriptions of ribosomal protein (RP) genes were decreased. However, the detailed mechanism of this downregulation has not been elucidated. In this study, we present a novel mechanistic model for a repressive role of Gcn4p on RP transcription, especially under amino-acid starvation. It was found that Gcn4p bound directly to Rap1p, which in turn inhibited Esa1p-Rap1p binding. The inhibition of Esa1p recruitment to RP promoters ultimately reduced the level of histone H4 acetylation and RP transcription. These data revealed that Gcn4p has simultaneous dual roles as a repressor for RP genes as well as an activator for amino-acid biosynthesis genes. Moreover, our results showed evidence of a novel link between general control of amino-acid biosynthesis and ribosome biogenesis mediated by Gcn4p at an early stage of adaptation to amino-acid starvation.
RNA polymerase II elongation complexes (ECs) were assembled from nuclear extract on immobilized DNA templates and analyzed by quantitative mass spectrometry. Time-course experiments showed that initiation factor TFIIF can remain bound to early ECs, while levels of core elongation factors Spt4-Spt5, Paf1C, Spt6-Spn1, and Elf1 remain steady. Importantly, the dynamic phosphorylation patterns of the Rpb1 C-terminal domain (CTD) and the factors that recognize them change as a function of postinitiation time rather than distance elongated. Chemical inhibition of Kin28/Cdk7 in vitro blocks both Ser5 and Ser2 phosphorylation, affects initiation site choice, and inhibits elongation efficiency. EC components dependent on CTD phosphorylation include capping enzyme, cap-binding complex, Set2, and the polymerase-associated factor (PAF1) complex. By recapitulating many known features of in vivo elongation, this system reveals new details that clarify how EC-associated factors change at each step of transcription.
In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.