Background
This study aimed to assess the diagnostic feasibility of radiomics analysis based on magnetic resonance (MR)-proton density fat fraction (PDFF) for grading hepatic steatosis in patients with suspected non-alcoholic fatty liver disease (NAFLD).
Methods
This retrospective study included 106 patients with suspected NAFLD who underwent a hepatic parenchymal biopsy. MR-PDFF and MR spectroscopy were performed on all patients using a 3.0-T scanner. Following whole-volume segmentation of the MR-PDFF images, 833 radiomic features were analyzed using a commercial program. Radiologic features were analyzed, including median and mean values of the multiple regions of interest and variable clinical features. A random forest regressor was used to extract the important radiomic, radiologic, and clinical features. The model was trained using 20 repeated 10-fold cross-validations to classify the NAFLD steatosis grade. The area under the receiver operating characteristic curve (AUROC) was evaluated using a classifier to diagnose steatosis grades.
Results
The levels of pathological hepatic steatosis were classified as low-grade steatosis (grade, 0–1; n = 82) and high-grade steatosis (grade, 2–3; n = 24). Fifteen important features were extracted from the radiomic analysis, with the three most important being wavelet-LLL neighboring gray tone difference matrix coarseness, original first-order mean, and 90th percentile. The MR spectroscopy mean value was extracted as a more important feature than the MR-PDFF mean or median in radiologic measures. Alanine aminotransferase has been identified as the most important clinical feature. The AUROC of the classifier using radiomics was comparable to that of radiologic measures (0.94 ± 0.09 and 0.96 ± 0.08, respectively).
Conclusion
MR-PDFF-derived radiomics may provide a comparable alternative for grading hepatic steatosis in patients with suspected NAFLD.
In this study, we identified long non-coding RNAs (lncRNAs) associated with DNA methylation in lung adenocarcinoma (LUAD) using clinical and methylation/expression data from 184 qualified LUAD tissue samples and 21 normal lung-tissue samples from The Cancer Genome Atlas (TCGA). We identified 1865 differentially expressed genes that correlated negatively with the methylation profiles of normal lung tissues, never-smoker LUAD tissues and smoker LUAD tissues, while 1079 differentially expressed lncRNAs were identified using the same criteria. These transcripts were integrated using ingenuity pathway analysis to determine significant pathways directly related to cancer, suggesting that lncRNAs play a crucial role in carcinogenesis. When comparing normal lung tissues and smoker LUAD tissues, 86 candidate genes were identified, including six lncRNAs. Of the 43 candidate genes revealed by comparing never-smoker LUAD tissues and smoker LUAD tissues, 13 were also different when compared to normal lung tissues. We then investigated the expression of these genes using the Gene Expression of Normal and Tumor Tissues (GENT) and Methylation and Expression Database of Normal and Tumor Tissues (MENT) databases. We observed an inverse correlation between the expression of 13 genes in normal lung tissues and smoker LUAD tissues, and the expression of five genes between the never-smoker and smoker LUAD tissues. These findings were further validated in clinical specimens using bisulfite sequencing, revealing that AGR2, AURKB, FOXP3, and HMGA1 displayed borderline differences in methylation. Finally, we explored the functional connections between DNA methylation, lncRNAs, and gene expression to identify possible targets that may contribute toward the pathogenesis of cigarette smoking-associated LUAD. Together, our findings suggested that differentially expressed lncRNAs and their target transcripts could serve as potential biomarkers for LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.