According to recent studies, Cannabidiol (CBD), one of the main components of Cannabis sativa, has anticancer effects in several cancers. However, the exact mechanism of CBD action is not currently understood. Here, CBD promoted cell death in gastric cancer. We suggest that CBD induced apoptosis by suppressing X-linked inhibitor apoptosis (XIAP), a member of the IAP protein family. CBD reduced XIAP protein levels while increasing ubiquitination of XIAP. The expression of Smac, a known inhibitor of XIAP, was found to be elevated during CBD treatment. Moreover, CBD treatment increased the interaction between XIAP and Smac by increasing Smac release from mitochondria to the cytosol. CBD has also been shown to affect mitochondrial dysfunction. Taken together, these results suggest that CBD may have potential as a new therapeutic target in gastric cancer.
Although oxaliplatin is an effective chemotherapeutic drug for colorectal cancer (CRC) treatment, patients often develop resistance to it. Therefore, a new strategy for CRC treatment is needed. The purpose of this study was to determine the effect of cannabidiol (CBD), one of the components of the cannabis plant, in overcoming oxaliplatin resistance in CRC cells. We established oxaliplatin-resistant cell lines, DLD-1 R and colo205 R, in CRC DLD-1 and colo205 cells. Autophagic cell death was induced when oxaliplatin-resistant cells were treated with both oxaliplatin and CBD. Additionally, phosphorylation of nitric oxide synthase 3 (NOS3) was increased in oxaliplatin-resistant cells compared to that in parent cells. Combined treatment with oxaliplatin and CBD reduced phospho-NOS3 levels and nitric oxide (NO) production and resulted in the production of reactive oxygen species (ROS) by reducing the levels of superoxide dismutase 2, an antioxidant present in the mitochondria, causing mitochondrial dysfunction. Taken together, these results suggest that elevated phosphorylation of NOS3 is essential for oxaliplatin resistance. The combination of oxaliplatin and CBD decreased NOS3 phosphorylation, which resulted in autophagy, by inducing the overproduction of ROS through mitochondrial dysfunction, thus overcoming oxaliplatin resistance.
Many reports have shown the anticancer effects of iron deficient on cancer cells, but the effects of iron-chelators on gastric cancer have not been clearly elucidated. Recently, we reported that iron chelators induced an antiproliferative effect in human malignant lymphoma and myeloid leukemia cells. In the present study, we investigated the antitumor activity of these two iron-chelating agents, deferoxamine (DFO) and deferasirox (DFX), with gastric cancer cell lines, and their apoptosis-inducing effects as the potential mechanism. We found that iron chelators displayed significant antiproliferative activity in human gastric cancer cell lines, which may be attributed to their induction of G1 phase arrest and apoptosis. We also found that iron chelators induced reactive oxygen species (ROS) production, resulting in the activation of both c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER) stress apoptotic pathways in gastric cancer cells. Taken together, our data suggest that iron chelators induced apoptosis in gastric cancer, involving ROS formation ER stress and JNK activation.
BackgroundReactive oxygen species modulator-1 (Romo1) is a novel protein that has been reported to be crucial for cancer cell proliferation and invasion. However, its clinical implications in colorectal cancer patients are not well-known. For the first time, we investigated the association between Romo1 and the clinical outcomes of colorectal cancer patients.StudyWe examined Romo1 expression in resected tumor tissues immunohistochemically and assessed it with histological scores. We conducted survival analyses for patients who had curative resection (n = 190) in accordance with clinical parameters including level of Romo1 expression, and we examined the association between Romo1 expression and cell invasion using Matrigel invasion assay in colorectal cancer cells.ResultsWe observed significantly longer mean disease-free survival in the low Romo1 group compared with the high Romo1 group (161 vs 127.6 months, p = 0.035), and the median overall survival of the low Romo1 group was significantly longer than that of the high Romo1 group (196.9 vs 171.3 months, p = 0.036). Cell invasiveness decreased in the Romo1 knockdown colorectal cancer cells in contrast to the controlled cells. Romo1 overexpression in tumor tissue was associated with a high lymph node ratio between the metastatic and examined lymph nodes (p = 0.025).ConclusionsRomo1 overexpression in tumor tissue was significantly associated with survival in curatively resected colorectal cancer patients, suggesting Romo1 expression as a potential adverse prognostic marker. Increased Romo1 expression was found to be associated with high lymph node ratio. Cancer invasiveness appeared to be a key reason for the poor survival related to highly expressed Romo1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.