BackgroundMammalian spermatozoa must undergo capacitation, before becoming competent for fertilization. Despite its importance, the fundamental molecular mechanisms of capacitation are poorly understood. Therefore, in this study, we applied a proteomic approach for identifying capacitation-related proteins in boar spermatozoa in order to elucidate the events more precisely. 2-DE gels were generated from spermatozoa samples in before- and after-capacitation. To validate the 2-DE results, Western blotting and immunocytochemistry were performed with 2 commercially available antibodies. Additionally, the protein-related signaling pathways among identified proteins were detected using Pathway Studio 9.0.ResultWe identified Ras-related protein Rab-2, Phospholipid hydroperoxide glutathione peroxidase (PHGPx) and Mitochondrial pyruvate dehydrogenase E1 component subunit beta (PDHB) that were enriched before-capacitation, and NADH dehydrogenase 1 beta subcomplex 6, Mitochondrial peroxiredoxin-5, (PRDX5), Apolipoprotein A-I (APOA1), Mitochondrial Succinyl-CoA ligase [ADP-forming] subunit beta (SUCLA2), Acrosin-binding protein, Ropporin-1A, and Spermadhesin AWN that were enriched after-capacitation (>3-fold) by 2-DE and ESI-MS/MS. SUCLA2 and PDHB are involved in the tricarboxylic acid cycle, whereas PHGPx and PRDX5 are involved in glutathione metabolism. SUCLA2, APOA1 and PDHB mediate adipocytokine signaling and insulin action. The differentially expressed proteins following capacitation are putatively related to sperm functions, such as ROS and energy metabolism, motility, hyperactivation, the acrosome reaction, and sperm-egg interaction.ConclusionThe results from this study elucidate the proteins involved in capacitation, which may aid in the design of biomarkers that can be used to predict boar sperm quality.
Microvilli on T cells have been proposed to survey surfaces of antigen-presenting cells (APC) or facilitate adhesion under flow; however, whether they serve essential functions during T cell activation remains unclear. Here we show that antigen-specific T cells deposit membrane particles derived from microvilli onto the surface of cognate antigen-bearing APCs. Microvilli carry T cell receptors (TCR) at all stages of T cell activation and are released as large TCR-enriched, T cell microvilli particles (TMP) in a process of trogocytosis. These microvilli exclusively contain protein arrestin-domain-containing protein 1, which is directly involved in membrane budding and, in combination with vacuolar protein-sorting-associated protein 4, transforms large TMPs into smaller, exosome-sized TMPs. Notably, TMPs from CD4+ T cells are enriched with LFA-2/CD2 and various cytokines involved in activating dendritic cells. Collectively, these results demonstrate that T cell microvilli constitute “immunological synaptosomes” that carry T cell messages to APCs.
Infertility or subfertility of bovine spermatozoa may lead to disintegration of the breeding system and large economic losses. Recently, proteomics have identified candidates for the sperm fertility biomarkers, but no definite studies have clearly identified the relationship between the proteome and sperm fertility after proteomic study. Therefore, to determine the clinical value of the protein markers identified by proteomic study, we first compared the protein expression profiles of spermatozoa from high and low fertility bulls using 2-dimensional electrophoresis. We then investigated the relationship between protein expression and the fertility of individual bulls as assessed by Western blot analysis. Five proteins, enolase 1 (ENO1), ATP synthase H+ transporting mitochondrial F1 complex beta subunit, apoptosis-stimulating of p53 protein 2, alpha-2-HS-glycoprotein, and phospholipid hydroperoxide glutathione peroxide, were more highly represented in high fertility bulls, whereas three proteins, voltage dependent anion channel 2 (VDAC2), ropporin-1, and ubiquinol-cytochrome-c reductase complex core protein 2 (UQCRC2), were more highly represented in low fertility bulls. Among those proteins, ENO1, VDAC2, and UQCRC2 were significantly correlated with individual fertility. Therefore, these results suggest that concurrent comparisons between protein expression and other fertility assays may represent a good in vitro assay to determine sperm fertility.
Conventional semen analysis has been used for prognosis and diagnosis of male fertility. Although this tool is essential for providing initial quantitative information about semen, it remains a subject of debate. Therefore, development of new methods for the prognosis and diagnosis of male fertility should be seriously considered for animal species of economic importance as well as for humans. In the present study, we applied a comprehensive proteomic approach to identify global protein biomarkers in boar spermatozoa in order to increase the precision of male fertility prognoses and diagnoses. We determined that L-amino acid oxidase, mitochondrial malate dehydrogenase 2, NAD (MDH2), cytosolic 5-nucleotidase 1B, lysozyme-like protein 4, and calmodulin (CALM) were significantly and abundantly expressed in high-litter size spermatozoa. We also found that equatorin, spermadhesin AWN, triosephosphate isomerase (TPI), Ras-related protein Rab-2A (RAB2A), spermadhesin AQN-3, and NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2) were significantly and abundantly expressed in low-litter size spermatozoa (>3-fold). Moreover, RAB2A, TPI, and NDUFS2 were negatively correlated with litter size, whereas CALM and MDH2 were positively correlated. This study provides novel biomarkers for the prediction of male fertility. To the best of our knowledge, this is the first work that shows significantly increased litter size using male fertility biomarkers in a field trial. Moreover, these protein markers may provide new developmental tools for the selection of superior sires as well as for the prognosis and diagnosis of male fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.