Two major isoforms of theHere, Runx2-II expression was found to be specifically stimulated by BMP-2 treatment or by Dlx5 overexpression. In addition, BMP-2, Dlx5, and Runx2-II were found to be expressed in osteogenic fronts and parietal bones of the developing cranial vault and Runx2-I and Msx2 in the sutural mesenchyme. Furthermore, Runx2 P1 promoter activity was strongly stimulated by Dlx5 overexpression, whereas Runx2 P2 promoter activity was not. Runx2 P1 promoter deletion analysis indicated that the Dlx5-specific response is due to sequences between ؊756 and ؊342 bp of the P1 promoter, where three Dlx5-response elements are located. Dlx5 responsiveness to these elements was confirmed by gel mobility shift assay and site-directed mutagenesis. Moreover, Msx2 specifically suppressed the Runx2 P1 promoter, and the responsible region overlaps with that recognized by Dlx5. In summary, Dlx5 specifically transactivates the Runx2 P1 promoter, and its action on the P1 promoter is antagonized by Msx2.The Runt-related transcription factor Runx2 plays an essential role in osteoblast differentiation and bone mineralization (1, 2). Two major isoforms are expressed from the mouse Runx2 locus, and these isoforms are generated by different promoter usage. Runx2 type I (Runx2-I), 2 referred to as the Cbfa1/p56 isoform or PEBP2␣A, is a 513-amino acid protein that starts with the amino acid sequence MRIPV (3) and is derived from the proximal P2 promoter of the gene (4). More recently, upstream exons of the Runx2 gene that potentially encode the N termini of Runx2 isoforms expressed in osteoblasts have been identified (5, 6). These upstream exons contain a 5Ј-untranslated region and encode the N-terminal 19 amino acids of Runx2 type II (Runx2-II; also referred to as Cbfa1/p57 and OSF2), which starts with the sequence MASNSL (7). This isoform is expressed from the P1 or "bone-related" upstream promoter (8), and its expression is predominant in osteoblasts (9). The alternative promoter usage strongly implies that the expression pattern of each isoform differs temporally and/or spatially. Indeed, they exhibit distinct expression patterns during bone development (10, 11). Thus, it is natural to assume that these two promoters differently respond to different extracellular signals or their downstream transcription factors because these promoters have distinct transcription factor-binding sites.Runx2 plays a central role in the BMP-2-induced trans-differentiation of C2C12 cells at an early restriction point by diverting them from the myogenic pathway to the osteogenic pathway (12, 13). We found that the homeobox gene Dlx5 is an upstream target of BMP-2 signaling and that it plays a pivotal role in stimulating the downstream osteogenic master transcription factor Runx2. In turn, Runx2 acts simultaneously or sequentially to induce the expression of bone-specific genes that represent BMP-2-induced osteogenic trans-differentiation. In addition, it has also been suggested that Dlx5 is a critical target of the inhibitory action of transform...
Although Eph-ephrin signalling has been implicated in the migration of cranial neural crest (CNC) cells, it is still unclear how ephrinB transduces signals regulating this event. We provide evidence that TBC1d24, a putative Rab35-GTPase activating protein (Rab35 GAP), complexes with ephrinB2 via the scaffold Dishevelled (Dsh) and mediates a signal affecting contact inhibition of locomotion (CIL) in CNC cells. Moreover, we found that, in migrating CNC, the interaction between ephrinB2 and TBC1d24 negatively regulates E-cadherin recycling in these cells via Rab35. Upon engagement of the cognate Eph receptor, ephrinB2 is tyrosine phosphorylated, which disrupts the ephrinB2/Dsh/TBC1d24 complex. The dissolution of this complex leads to increasing E-cadherin levels at the plasma membrane, resulting in loss of CIL and disrupted CNC migration. Our results indicate that TBC1d24 is a critical player in ephrinB2 control of CNC cell migration via CIL.
In adult vertebrates, fibroblast growth factor (FGF) synergizes with many hematopoietic cytokines to stimulate the proliferation of hematopoietic progenitors. In vertebrate development, the FGF signaling pathway is important in the formation of some derivatives of ventroposterior mesoderm. However, the function of FGF in the specification of the embryonic erythropoietic lineage has remained unclear. Here we address the role of FGF in the specification of the erythropoietic lineage in the Xenopus embryo. We report that ventral injection of embryonic FGF (eFGF) mRNA at as little as 10 pg at the four-cell stage suppresses ventral blood island (VBI) formation, whereas expression of the dominant negative form of the FGF receptor in the lateral mesoderm, where physiologically no blood tissue is formed, results in a dramatic expansion of the VBI. Similar results were observed in isolated ventral marginal zones and animal caps. Bone morphogenetic protein-4 (BMP-4) is known to induce erythropoiesis in the Xenopus embryo. Therefore, we examined how the BMP-4 and FGF signaling pathways might interact in the decision of ventral mesoderm to form blood. We observed that eFGF inhibits BMP-4-induced erythropoiesis by differentially regulating expression of the BMP-4 downstream effectors GATA-2 and PV.1. GATA-2, which stimulates erythropoiesis, is suppressed by FGF. PV.1, which we demonstrate to inhibit blood development, is enhanced by FGF. Additionally, PV.1 and GATA-2 negatively regulate transcription of each other. Thus, BMP-4 induces two transcription factors which have opposing effects on blood development. The FGF and BMP-4 signaling pathways interact to regulate the specification of the erythropoietic lineage.
The Eph/ephrin signaling pathways have a critical function in cell adhesion and repulsion, and thus play key roles in various morphogenetic events during development. Here we show that a decrease in ephrinB2 protein causes neural tube closure defects during Xenopus laevis embryogenesis. Such a decrease in ephrinB2 protein levels is observed upon the loss of flotillin-1 scaffold protein, a newly identified ephrinB2-binding partner. This dramatic decline in ephrinB2 protein levels upon the absence of flotillin-1 expression is specific, and is partly the result of an increased susceptibility to cleavage by the metalloprotease ADAM10. These findings indicate that flotillin-1 regulates ephrinB2 protein levels through ADAM10, and is required for appropriate neural tube morphogenesis in the Xenopus embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.