We have synthesized a novel composite material, FeSb2 alloy with red phosphorus (P) dispersed in a conductive carbon matrix, using high-energy ball milling (HEBM). The introduction of red P into FeSb2 alloy led to a formation of Sb phase along with FeSb2 phase due to the difference of binding energy between the elements. The morphology and structure were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The active components (Sb and P) react with Li+ ions while inactive element (Fe) and carbon matrix act as a metal framework to support the electrochemically active Sb and as a buffer to reduce volume change during cycling, respectively. Among electrodes (FeSb2, FeSb2-P, FeSb2-P@C), the FeSb2-P@C electrode demonstrated high reversible capacity of 400 mAh g-1 with a good capacity retention of ~68% at 50 cycles and high rate reversible capacity of ~470 mAh g-1 at a current rate of 3000 mA g-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.