Purpose and Experimental Design: The molecular events in the malignant progression of colon adenoma after loss of adenomatous polyposis coli (APC) are not fully understood. KITE-NIN (KAI1 C-terminal interacting tetraspanin) increases the invasiveness of colorectal cancer cells, and we identified a novel EGFRindependent oncogenic signal of EGF that works under coexpressed KITENIN and ErbB4. Here we tested whether elevated KITENIN and ErbB4 contribute to further progression of intestinal adenoma following APC loss.Results: The intestinal tissues of villin-KITENIN transgenic mice in which villin-driven KITENIN expression induces increased c-Jun expression exhibit mild epithelial cell proliferation but no epithelial lineage changes compared with those of nontransgenic mice. Among the four ErbB4 isoforms, JM-a/CYT-2 and JM-b/CYT-2 exhibited the highest AP-1 activity when cells coexpressing KITE-NIN and each isoform were stimulated by EGF. Interestingly, predominant overexpression of the ErB4-CYT-2 mRNA as well as increased EGFR expression were observed in intestinal adenoma of APC min/þ mice, which makes the microenvironment of activated EGF signaling. When we crossed villin-KITENIN mice with APC min/þ mice, intestinal tumor tissues in the crossed mice showed the characteristics of early-stage invading adenocarcinoma. In patients with colorectal cancer, ErbB4-CYT-2 mRNA expression was significantly greater in tumor tissues than in normal adjacent tissues, but no significant differences in tumor tissue expression were found between different colorectal cancer stages. Furthermore, the mRNA expression of KITENIN and that of ErbB4-CYT-2 were positively correlated in human colorectal cancer tissue.Conclusions: Elevated coexpression of KITENIN and ErbB4-CYT-2 promotes the transition of colon adenoma to adenocarcinoma within an APC loss-associated tumor microenvironment.
Understanding the complex biological functions of E3-ubiquitin ligases may facilitate the development of mechanism-based anti-cancer drugs. We recently identified that the KITENIN/ErbB4-Dvl2-c-Jun axis works as a novel unconventional downstream signal of epidermal growth factor (EGF) in colorectal cancer (CRC) tissues. Here we addressed whether E3-ubiquitin ligases are required for operation of this axis. We found that Nrdp1, an E3-ligase for ErbB3/ErbB4, interacted with KITENIN (KAI1 C-terminal interacting tetraspanin) to form a functional KITENIN/ErbB4/Nrdp1 complex and is responsible for down-regulating Dvl2 within this complex. Interestingly, ErbB4 was resistant to degradation by Nrdp1 in KITENIN/Nrdp1-co-transfected CRC cells, and KITENIN bound to the C-terminal coiled-coil domain of Nrdp1. Chemical blockade of ErbB kinase did not block the action of EGF to increase in total/phospho-ErbB4 and phospho-ERK in KITENIN/ErbB4-cotransfected cells, whereas it blocked the action of EGF in ErbB4 alone-transfected CRC cells. In human CRC tissues, higher expressions of ErbB4 and KITENIN and lower expression of Dvl2 was observed in stage IV samples than in stage I, but a low level of Nrdp1 was expressed in both stages and it did not differ significantly by stage. These results indicated that Nrdp1 is necessary for the reduction in Dvl2 to generate c-Jun in the EGF-KITENIN/ErbB4-c-Jun axis, but more importantly, elevated KITENIN protects KITENIN-bound ErbB4 from Nrdp1-mediated degradation via physical collaboration between the KITENIN/ErbB4 complex and Nrdp1, but not via modulation of ErbB kinase activity. Thus, KITENIN functions in the maintenance of a higher expression level of ErbB4 in advanced CRC tissues, independent of ubiquitin-mediated degradation via Nrdp1. © 2016 Wiley Periodicals, Inc.
Background Distant metastasis is the major cause of death in patients with colorectal cancer (CRC). Previously, we identified KITENIN as a metastasis-enhancing gene and suggested that the oncogenic KITENIN complex is involved in metastatic dissemination of KITENIN-overexpressing CRC cells. Here, we attempted to find substances targeting the KITENIN complex and test their ability to suppress distant metastasis of CRC. Methods We screened a small-molecule compound library to find candidate substances suppressing the KITENIN complex in CRC cells. We selected a candidate compound and examined its effects on the KITENIN complex and distant metastasis through in vitro assays, a molecular docking model, and in vivo tumor models. Results Among several compounds, we identified DKC1125 (Disintegrator of KITENIN Complex #1125) as the best candidate. DKC1125 specifically suppressed KITENIN gain of function. After binding KH-type splicing regulatory protein (KSRP), DKC1125 degraded KITENIN and Dvl2 by recruiting RACK1 and miRNA-124, leading to the disintegration of the functional KITENIN–KSRP–RACK1–Dvl2 complex. A computer docking model suggested that DKC1125 specifically interacted with the binding pocket of the fourth KH-domain of KSRP. KITENIN-overexpressing CRC cells deregulated certain microRNAs and were resistant to 5-fluorouracil, oxaliplatin, and cetuximab. DKC1125 restored sensitivity to these drugs by normalizing expression of the deregulated microRNAs, including miRNA-124. DKC1125 effectively suppressed colorectal liver metastasis in a mouse model. Interestingly, the combination of DKC1125 with 5-fluorouracil suppressed metastasis more effectively than either drug alone. Conclusion DKC1125 targets the KITENIN complex and could therefore be used as a novel therapeutic to suppress liver metastasis in CRC expressing high levels of KITENIN.
We have shown that ginsenoside Rf (Rf) regulates voltagedependent Ca 2ϩ channels through pertussis toxin (PTX)-sensitive G proteins in rat sensory neurons. These results suggest that Rf can act through a novel G protein-linked receptor in the nervous system. In the present study, we further examined the effect of Rf on G protein-coupled inwardly rectifying K ϩ (GIRK) channels after coexpression with size-fractionated rat brain mRNA and GIRK1 and GIRK4 (GIRK1/4) channel cRNAs in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. We found that Rf activated GIRK channel in a dose-dependent and reversible manner after coexpression with subfractions of rat brain mRNA and GIRK1/4 channel cRNAs. This Rf-evoked current was blocked by Ba 2ϩ , a potassium channel blocker. The size of rat brain mRNA responding to Rf was about 6 to 7 kilobases. However, Rf did not evoke GIRK current after injection with this subfraction of rat brain mRNA or GIRK1/4 channel cRNAs alone. Other ginsenosides, such as Rb 1 and Rg 1 , evoked only slight induction of GIRK currents after coexpression with the subfraction of rat brain mRNA and GIRK1/4 channel cRNAs. Acetylcholine and serotonin almost did not induce GIRK currents after coexpression with the subfraction of rat brain mRNA and GIRK1/4 channel cRNAs. Rf-evoked GIRK currents were not altered by PTX pretreatment but were suppressed by intracellularly injected guanosine-5Ј-(2-O-thio) diphosphate, a nonhydrolyzable GDP analog. These results indicate that Rf activates GIRK channel through an unidentified G protein-coupled receptor in rat brain and that this receptor can be cloned by the expression method demonstrated here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.