Target-following mobile robots have gained attention in various industrial applications. This study proposes an ultra-wideband-based target localization method that provides highly accurate and robust target tracking performance for a following robot. Based on the least square approximation framework, the proposed method improves localization accuracy by compensating localization bias and high-frequency deviations component by component. Initial calibration method is proposed to measure the device-dependent localization bias, which enables a compensation of the bias error not only at the calibration points, but also at the any other points. An iterative complementary filter, which recursively produces optimal estimation for each timeframe as a weighted sum of previous and current estimation depending on the reliability of each estimation, is proposed to reduce the deviation of the localization error. The performance of the proposed method is validated using simulations and experiments. Both the magnitude and deviation of the localization error were significantly improved by up to 77 and 51%, respectively, compared with the previous method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.