Translational control is a key genetic regulatory mechanism implicated in regulation of cell and organismal growth and early embryonic development. Initiation at the mRNA 5' cap structure recognition step is frequently targeted by translational control mechanisms. In the Drosophila embryo, cap-dependent translation of the uniformly distributed caudal (cad) mRNA is inhibited in the anterior by Bicoid (Bcd) to create an asymmetric distribution of Cad protein. Here, we show that d4EHP, an eIF4E-related cap binding protein, specifically interacts with Bcd to suppress cad translation. Translational inhibition depends on the Bcd binding region (BBR) present in the cad 3' untranslated region. Thus, simultaneous interactions of d4EHP with the cap structure and of Bcd with BBR renders cad mRNA translationally inactive. This example of cap-dependent translational control that is not mediated by canonical eIF4E defines a new paradigm for translational inhibition involving tethering of the mRNA 5' and 3' ends.
In the early Drosophila embryo, asymmetric distribution of transcription factors, established as a consequence of translational control of their maternally derived mRNAs, initiates pattern formation . For instance, translation of the uniformly distributed maternal hunchback (hb) mRNA is inhibited at the posterior to form an anterior-to-posterior protein concentration gradient along the longitudinal axis . Inhibition of hb mRNA translation requires an mRNP complex (the NRE complex), which consists of Nanos (Nos), Pumilio (Pum), and Brain tumor (Brat) proteins, and the Nos responsive element (NRE) present in the 3' UTR of hb mRNA . The identity of the mRNA 5' effector protein that is responsible for this translational inhibition remained elusive. Here we show that d4EHP, a cap binding protein that represses caudal (cad) mRNA translation , also inhibits hb mRNA translation by interacting simultaneously with the mRNA 5' cap structure (m(7)GpppN, where N is any nucleotide) and Brat. Thus, by regulating Cad and Hb expression, d4EHP plays a key role in establishing anterior-posterior axis polarity in the Drosophila embryo.
Since its discovery
in 1994, Kaposi's sarcoma-associated
herpesvirus (KSHV) has been associated with
lymphoproliferative disorders, particularly in
patients infected with human immunodeficiency
virus (HIV). The disorders most strongly linked
to KSHV are multicentric Castleman's Disease
(MCD), primary effusion lymphoma, and diffuse
large B-cell lymphomas. We report an unusual
case of KSHV-associated lymphoma in an
HIV-infected patient manifesting with myocardial
and central nervous system involvement. We
discuss this case in the context of increasing
array of KSHV-associated lymphomas. In the
HIV-infected patient with a mass lesion, a
history of cutaneous Kaposi's sarcoma and
prolonged immunosuppression should alert
clinicians as to the possibility of
KSHV-associated lymphoproliferative disorders,
in order to establish a timely
diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.