Recycling of various wastes such as sewage sludge requires an energy conversion process like thermal pyrolysis/gasification. During the process, tar and syngas are produced, but the tar brings trouble in pipelines and creates operating problems for the facility. In this study, to investigate naphthalene destruction in a gliding arc plasma reformer, parametric experiments were achieved in the variables that can affect the destruction efficiency. And through the parametric studies, the optimal operating conditions and the results were taken. For the parametric studies, steam input amount (steam/carbon ratio), input discharged power SEI (specific energy input), total feed gas amount, input naphthalene concentration, and electrode length were selected for experiments. Optimal conditions were 2.5 of S/C ratio, 1 kWh/m 3 of SEI, 18.4 L/min of total gas amount, 1% of input naphthalene concentration, and 95 mm of electrode length. The corresponding maximum destruction efficiency of naphthalene was 79%, and energy efficiency showed 47 g/kWh.
The effect of the template of HZSM-5 and its synthesis method on the catalytic conversions of ethanol to aromatic hydrocarbons has been investigated over a 0.8%Zn/0.6%La/HZSM-5 (Si/Al2 = 50) catalyst in a fixed-bed flow reactor under operating conditions of T = 710 K, P = 1 bar, and WHSV = 0.8 hr(-1). Nano- and micro-size HZSM-5 were prepared by hydrothermal and microwave synthesis with different templates: TPAOH, TPABr, and HMDA. Zinc and lanthanum modified HZSM-5 catalysts were prepared by a simple co-impregnation method. It was found that the size of the particles and the crystal structure of HZSM-5 were influenced by the template type and synthesis method. When using the TPAOH template, the nano-sized particles were prepared by microwave synthesis, whereas HZSM-5 prepared from TPABr and HMDA by a hydrothermal method, were composed of cubic shaped nanocrystals inside a micro-sized particle. The effect of the template on the selectivity to aromatics over a La/Zn/HZSM-5 catalyst was shown as follows: HMDA > TPABr > TPAOH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.