Abstract:Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) – the causal agent in COVID-19 – affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.
Summary A detailed understanding of the paths that stem cells traverse to generate mature progeny is vital for elucidating mechanisms governing cell fate decisions and tissue homeostasis. Adult stem cells maintain and regenerate multiple mature cell lineages in the olfactory epithelium. Here we integrate single cell RNA sequencing and robust statistical analyses with in vivo lineage tracing to define a detailed map of the postnatal olfactory epithelium, revealing cell fate potentials and branch points in olfactory stem cell lineage trajectories. Olfactory stem cells produce support cells via direct fate conversion in the absence of cell division, and their multipotency at the population level reflects collective unipotent cell fate decisions by single stem cells. We further demonstrate that Wnt signaling regulates stem cell fate by promoting neuronal fate choices. This integrated approach reveals mechanisms guiding olfactory lineage trajectories and provides a model for deconstructing similar hierarchies in other stem cell niches.
Summary The olfactory epithelium is a sensory neuroepithelium that supports adult neurogenesis and tissue regeneration following injury, making it an excellent model for investigating neural stem cell regulation in vivo. Previous studies have identified the horizontal basal cell (HBC) as the neural stem cell of the postnatal olfactory epithelium. The molecules and pathways regulating HBC self-renewal and differentiation are unknown, however. In the present study we demonstrate that the transcription factor p63, a member of the p53 tumor suppressor gene family known to regulate stem cell dynamics in other epithelia, is highly enriched in HBCs. We show that p63 is required cell-autonomously for olfactory stem cell renewal and further demonstrate that p63 functions to repress HBC differentiation. These results provide critical insight into the genetic regulation of the olfactory stem cell in vivo, and more generally provide an entrée toward understanding the coordination of stem cell self-renewal and differentiation.
Summary Tissue homeostasis and regeneration are mediated by programs of adult stem cell renewal and differentiation. However, the mechanisms that regulate stem cell fates under such widely varying conditions are not fully understood. Using single cell techniques, we assessed the transcriptional changes associated with stem cell self-renewal and differentiation and followed the maturation of stem cell-derived clones using sparse lineage tracing in the regenerating mouse olfactory epithelium. Following injury, quiescent olfactory stem cells rapidly shift to activated, transient states unique to regeneration and tailored to meet the demands of injury-induced repair, including barrier formation and proliferation. Multiple cell fates – including renewed stem cells and committed differentiating progenitors – are specified during this early window of activation. We further show that Sox2 is essential for cells to transition from the activated to neuronal progenitor states. Our study highlights strategies for stem cell-mediated regeneration that may be conserved in other adult stem cell niches.
The vacuole occupies most of the volume of plant cells; thus, the tonoplast marker d-tonoplast intrinsic protein-green fluorescent protein delineates cell shape, for example, in epidermis. This permits rapid identification of mutants. Using this strategy, we identified the cell shape phenotype-1 (csp-1) mutant in Arabidopsis thaliana. Beyond an absence of lobes in pavement cells, phenotypes included reduced trichome branching, altered leaf serration and stem branching, and increased stomatal density. This result from a point mutation in AtTPS6 encoding a conserved amino-terminal domain, thought to catalyze trehalose-6-phosphate synthesis and a carboxy-terminal phosphatase domain, is catalyzing a two-step conversion to trehalose. Expression of AtTPS6 in the Saccharomyces cerevisiae mutants tps1 (encoding a synthase domain) and tps2 (encoding synthase and phosphatase domains) indicates that AtTPS6 is an active trehalose synthase. AtTPS6 fully complemented defects in csp-1. Mutations in class I genes (AtTPS1-AtTPS4) indicate a role in regulating starch storage, resistance to drought, and inflorescence architecture. Class II genes (AtTPS5-AtTPS11) encode multifunctional enzymes having synthase and phosphatase activity. We show that class II AtTPS6 regulates plant architecture, shape of epidermal pavement cells, and branching of trichomes. Thus, beyond a role in development, we demonstrate that the class II gene AtTPS6 is important for controlling cellular morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.