In this study, experimental and numerical methods were applied to estimate surge and sway wave drift forces and yaw drift moment acting on KVLCC2, advancing in oblique wave. An experiment was carried out in the ocean engineering basin of the Korea Research Institute of Ships and Ocean Engineering (KRISO). A series of regular wave tests under various heading conditions were conducted to investigate ship motion responses and wave drift forces. A Rankine panel method based on potential flow was adopted in the numerical analysis, and the direct pressure integration method that integrates second-order pressure on the hull surface was applied to compute wave drift force. Through this study, validation data of wave drift force acting on KVLCC2 was established, and the computation capability of the potential-based numerical method was systematically analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.