PurposeMeasurement of IgE specific to purified house dust mite (HDM) allergens may improve allergy diagnosis. This study aimed to investigate the sensitization profiles of Korean HDM allergic subjects suffering from respiratory allergy and atopic dermatitis (AD) to Der f 1, Der f 2, Der f 6, Der f 8, Der f 10, and Der f 20.MethodsRecombinant HDM allergens were produced in Pichia pastoris (Der f 1) or Escherichia coli (5 allergens). IgE reactivity to the individual recombinant allergens and total extract of mite was assessed by ELISA.ResultsDer f 1 was recognized by 79.1%, Der f 2 by 79.1%, Der f 6 by 9.3%, Der f 8 by 6.2%, Der f 10 by 6.2%, and Der f 20 by 6.6% of the patients' sera tested, while the prevalence of IgE reactivity to total mite extract was 94.7%. Combination of Der f 1 and Der f 2 had a sensitivity of 87.6%. Specific IgE to Der f 2 alone was detected from 89.4% of HDM-sensitized respiratory allergy subjects and 92.3% to the combination of the 2 major allergens Der f 1 and Der f 2. However, sera from fewer patients with AD, namely 72.4% and 71.0%, recognized Der f 1 and Der f 2, respectively. The combination of 2 major allergens allowed diagnosis of 84.5% of the AD patients. No correlation between sensitization to specific allergens and HDM allergy entity was found.ConclusionsDer f 2 was the most frequently sensitized allergen among the HDM-sensitized respiratory and AD patients in Korea, and the combination of the group 1 and 2 major allergens increased the diagnostic sensitivity. Minor allergens did not significantly improve diagnostic sensitivity. However, further studies are needed to analyze the relationship between sensitization to other HDM allergens and the disease entity of the HDM allergy.
BackgroundExcessive mucus production is typical in various upper airway diseases. In sinusitis, the expression of MUC5AC, a major respiratory mucin gene, increases. However, the mechanisms leading to mucus hypersecretion in sinusitis have not been characterized. Hypoxia due to occlusion of the sinus ostium is one of the major pathologic mechanisms of sinusitis, but there have been no reports regarding the mechanism of hypoxia-induced mucus hypersecretion.Methods and FindingsThis study aims to identify whether hypoxia may induce mucus hypersecretion and elucidate its mechanism. Normal human nasal epithelial (NHNE) cells and human lung mucoepidermoid carcinoma cell line (NCI-H292) were used. Sinus mucosa from patients was also tested. Anoxic condition was in an anaerobic chamber with a 95% N2/5% CO2 atmosphere. The regulatory mechanism of MUC5AC by anoxia was investigated using RT-PCR, real-time PCR, western blot, ChIP, electrophoretic mobility shift, and luciferase assay. We show that levels of MUC5AC mRNA and the corresponding secreted protein increase in anoxic cultured NHNE cells. The major transcription factor for hypoxia-related signaling, HIF-1α, is induced during hypoxia, and transfection of a mammalian expression vector encoding HIF-1α results in increased MUC5AC mRNA levels under normoxic conditions. Moreover, hypoxia-induced expression of MUC5AC mRNA is down-regulated by transfected HIF-1α siRNA. We found increased MUC5AC promoter activity under anoxic conditions, as indicated by a luciferase reporter assay, and mutation of the putative hypoxia-response element in MUC5AC promoter attenuated this activity. Binding of over-expressed HIF-1α to the hypoxia-response element in the MUC5AC promoter was confirmed. In human sinusitis mucosa, which is supposed to be hypoxic, expression of MUC5AC and HIF-1α is higher than in control mucosa.ConclusionThe results indicate that anoxia up-regulates MUC5AC by the HIF-1α signaling pathway in human nasal epithelia and suggest that hypoxia might be a pathogenic mechanism of mucus hypersecretion in sinusitis.
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein-2 alpha (AP2 alpha) in human nasal polyp epithelium. We hypothesized that AP2 alpha overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12-myristate 13-acetate (PMA) treatment of the airway epithelial cell line NCI-H292 increases MUC8 gene and AP2 alpha expression. In this study, we sought to determine which signal pathway is involved in PMA-induced MUC8 gene expression. The results show that the protein kinase C and mitogen-activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO-31-8220 or PKC siRNA significantly suppress AP2 alpha as well as MUC8 gene expression in PMA-treated cells. To verify the role of AP2 alpha, we specifically knocked down AP2 alpha expression with siRNA. A significant AP2 alpha knock-down inhibited PMA-induced MUC8 gene expression. While dominant negative AP2 alpha decreased PMA-induced MUC8 gene expression, overexpressing wildtype AP2 alpha increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2 alpha in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2 alpha activation in human airway epithelial cells.
Corresponding author's email: entman@yuhs.acHypoxia is known to be one of the major pathologic mechanisms of sinusitis. We hypothesized that hyper-permeability caused by hypoxia is a major phathophysiologic mechanism of upper airway disease, such as sinusitis. The aim of this study is to identify the mechanism of hypoxia induced hyper-permeability which mediates increased paracellular permeability and enhanced microbial invasiveness in the airway epithelium. Here we showed that the expression of VEGF mRNA/protein and HIF-1α protein were increased as a function of time under hypoxia in normal human nasal epithelial cells. Our results also indicated that the VEGF expression was induced by the transfection of mammalian expression vector encoding HIF-1α, while the VEGF expression was down-regulated by the transfection of siRNA for HIF-1α under hypoxic condition. We also performed trans-epithelial permeability assay by measuring Trans-Epithelial Electrical Resistance (TEER), which indicated that permeability was increased as a function of time under hypoxia and was rescued by VEGF monoclonal antibody (Bevacizumab) and siRNA for HIF-1α. We could detect upregulated HIF-1α and VEGF expression in the mucosal epithelium samples from the sinusitis patients compared to normal mucosal epithelium, using Western blot and immunohistochemical staining. In conclusion, we suggest that Hypoxia-HIF-1α-VEGF axis play an important role in hyper-permeability of the airway epithelial cells, which implies the pathophysiology of the upper respiratory track disease such as sinusitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.