Increased occurrences of fresh produce-related outbreaks of foodborne illness have focused attention on effective washing processes for fruits and vegetables. A titanium dioxide (TiO2) photocatalytic reaction under UV radiation provides a high rate of disinfection. The photo-killing effects of TiO2 on bacteria in liquid cultures under experimental conditions have been widely studied. However, the disinfection effects of the TiO2 photocatalytic reaction on fresh vegetables during a washing process have not been evaluated. Our objectives were to design a pilot-scale TiO2/UV photocatalytic reactor for fresh carrots and to compare the bactericidal effects of the TiO2/UV reaction against bacteria in liquid media and on carrots. TiO2/UV photocatalytic reactions for 40, 60, and 30 s were required for the complete killing of Escherichia coli, Salmonella Typhimurium, and Bacillus cereus (initial counts of approximately 6.7 log CFU/ml), respectively. The counts of total aerobic bacteria in fresh carrots and foodborne pathogenic bacteria in inoculated carrots were also measured. Counts of total aerobic bacteria were reduced by 1.8 log CFU/g after TiO2/UV photocatalytic disinfection for 20 min compared with a 1.1-log CFU/g reduction by UV alone. E. coli, Salmonella Typhimurium, and B. cereus (8 log CFU/ml) were inoculated onto carrots, and the number of surviving bacteria in carrots was determined after treatment. The TiO2/UV treatment exhibited 2.1-, 2.3-, and 1.8-log CFU/g reductions in the counts of E. coli, Salmonella Typhimurium, and B. cereus, respectively, compared with 1.3-, 1.2-, and 1.2-log CFU/g reductions by UV alone. The TiO2/UV photocatalyst reaction showed significant bactericidal effects, indicating that this process is applicable to nonthermal disinfection of fresh vegetables.
Multidrug-resistant (MDR) bacteria are a major threat to public health. Bacteriophage endolysins (lysins) are a promising alternative treatment to traditional antibiotics. However, the lysins currently under development are still underestimated. Herein, we cloned the lysin from the SAP-26 bacteriophage genome. The recombinant LysSAP26 protein inhibited the growth of carbapenem-resistant Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, oxacillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium with minimum inhibitory concentrations of 5~80 µg/mL. In animal experiments, mice infected with A. baumannii were protected by LysSAP26, with a 40% survival rate. Transmission electron microscopy analysis confirmed that LysSAP26 treatment resulted in the destruction of bacterial cell walls. LysSAP26 is a new endolysin that can be applied to treat MDR A. baumannii, E. faecium, S. aureus, K. pneumoniae, P. aeruginosa, and E. coli infections, targeting both Gram-positive and Gram-negative bacteria.
Securing the physical quality and microbial safety of fresh foods has been a major focus in the food industry. To improve quality and increase the shelf life of fresh produce, disinfection methods have been developed. Titanium dioxide (TiO2) photocatalytic reactions under UV radiation produce hydroxyl radicals that can be used for disinfection of foodborne pathogenic bacteria. We investigated the effects of TiO2-UV photocatalytic disinfection on the shelf life of iceberg lettuce. Counts of natural microflora (total aerobic bacteria, coliforms, psychrotrophic bacteria, and yeasts and molds) and inoculated pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, and Salmonella Typhimurium) on iceberg lettuce were determined after 20-min treatments with TiO2-UV, UV radiation, a sodium hypochlorite (NaOCl) solution, and tap water. TiO2-UV treatment reduced the number of microorganisms by 1.8 to 2.8 log CFU/g compared with reductions of 0.9 to 1.4 and 0.7 to 1.1 log CFU/g obtained with UV radiation and NaOCl treatments, respectively. Treatment with tap water was used as a control and resulted in no reductions. Counts of microflora for iceberg lettuce at 4 and 25 degrees C were determined during a 9-day period. TiO2-UV treatment resulted in 1.2- and 4.3-log increases in the counts of total aerobic bacteria at 4 and 25 degrees C, respectively, compared with 1.3- to 1.6-log and 4.4- to 4.8-log increases due to UV radiation and NaOCl treatments.
Background: Accurate identification of primary pathogens in foot infections remains challenging due to the diverse microbiome. Conventional culture may show false-positive or false-negative growth, leading to ineffective postoperative antibiotic treatment. Next-generation sequencing (NGS) has been explored as an alternative to standard culture in orthopedic infections. NGS is highly sensitive and can detect an entire bacterial genome along with genes conferring antibiotic resistance in a given sample. We investigated the potential use of NGS for accurate identification and quantification of microbes in infected diabetic foot ulcer (DFU). We hypothesize that NGS will aid identification of dominant pathogen and provide a more complete profile of microorganisms in infected DFUs compared to the standard culture method. Methods: Data were prospectively collected from 30 infected DFU patients who underwent operative treatment by a fellowship-trained orthopedic foot and ankle surgeon from October 2018 to September 2019. The average age of the patient was 60.4 years. Operative procedures performed were irrigation and debridement (12), toe or ray amputation (13), calcanectomies (4), and below-the-knee amputation (1). Infected bone specimens were obtained intraoperatively and processed for standard culture and NGS. Concordance between the standard culture and NGS was assessed. Results: In 29 of 30 patients, pathogens were identified by both NGS and culture, with a concordance rate of 70%. In standard culture, Staphylococcus aureus (58.6%) was the most common pathogen, followed by coagulase-negative Staphylococcus (24.1%), Corynebacterium striatum (17.2%), and Enterococcus faecalis (17.2%). In NGS, Finegoldia magna (44.8%) was the most common microorganism followed by S. aureus (41.4%), and Anaerococcus vaginalis (24.1%). On average, NGS revealed 5.1 (range, 1-11) pathogens in a given sample, whereas culture revealed 2.6 (range, 1-6) pathogens. Conclusion: NGS is an emerging molecular diagnostic method of microbial identification in orthopedic infection. It frequently provides different profiles of microorganisms along with antibiotic-resistant gene information compared to conventional culture in polymicrobial foot infection. Clinical use of NGS for management of foot and ankle infections warrants further investigation. Level of Evidence: Level II, diagnostic study.
Nosocomial infections caused by multidrug-resistant (MDR) bacteria are severe life-threatening factors. Endolysins (lysins) degrade the bacterial cell wall peptidoglycan and may help control pathogens, especially MDR bacteria prevalent in hospital settings. This study was conducted to verify the potential of lysin as disinfectant to kill bacteria contaminating medical devices that cause hospital infections. Eight catheters removed from hospitalized patients were collected and tested for their ability to kill bacteria contaminating the catheters using two lysins, LysSS and CHAP-161. Catheter-contaminating bacterial species were isolated and identified by 16s rRNA sequencing. From the eight catheters, bacteria were cultured from seven catheters, and five bacterial species (Bacillus megaterium, Bacillus muralis, Corynebacterium striatum, Enterococcus faecium, and Staphylococcus epidermidis) were identified. LysSS could inhibit catheter-contaminating bacteria, including C. striatum and S. epidermidis, compared with untreated controls but could not inhibit the growth of E. faecium. CHAP-161 showed more bactericidal effects than LysSS, but could not inhibit the growth of S. epidermidis. This study showed the potential of lysin as an alternative disinfectant for hazardous chemical disinfectants used in hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.