Plasma‐enhanced atomic layer deposition (PEALD)‐based bilayer IZO (back channel)/IGZO top‐gate thin‐film transistors (TFTs) with different IZO and IGZO layer thicknesses are fabricated to evaluate the correlation between thickness and electrical characteristics/reliability caused by dual‐channel modulation. The dual‐channel formed by IZO stacked on the backchannel improves both mobility and reliability of devices as the IZO layer thickness increases. In the TCAD simulation, as the thickness of IZO increases, the current flowing through the IZO channel among the dual channels increases and the main channel transition from IGZO to IZO occurs above a certain IZO layer thickness. The main channel transition to IZO, which has high mobility and is located in the backchannel away from the gate insulator (GI), leads to a mobility increase with a lower threshold voltage (Vth) shift and a remarkable improvement of reliability deteriorated by the GI. As a result, PEALD‐based IZO/IGZO TG TFTs exhibit both high mobility (≈40 cm2 V−1 s−1) and high stability (ΔVth = ‐0.07 V) of a positive bias temperature stress up to 10 800 s. This suggests that ALD‐based dual‐channel regulation by nanoscale thickness control of the stacking oxide semiconductor can overcome the trade‐off between mobility and reliability.
In–Ga–Zn–O (IGZO) material has been researched due to its favorable electrical characteristics for application in thin‐film transistor (TFT) applications such as low off current and relatively high mobility. However, most recently, as the developing and expanding application fields, conventional IGZO is a challenging aspect because higher mobility and excellent step‐coverage are required to be applied to high‐resolution displays and 3D NAND. In this regard, atomic layer deposition (ALD) is suggested as a novel deposition method for tackling issues. Here, this work systematically synthesizes IGZO films with various compositions by the supercycle technique of plasma‐enhanced ALD (PEALD) to determine the optimum metal cation composition range of the IGZO system for high‐mobility TFTs. The trends in the metal composition dependent electrical properties of ALD processed IGZO films are comparable to the previously reported results, while the structural properties are exclusive. Since both microstructure and carrier concentration affect to device characteristics complexly, the optimal In–Ga–Zn region is newly demonstrated via PEALD (XIn: 0.56–0.63, XGa: 0.13–0.17, XZn: 0.17–0.34). In this region, the device exhibits a remarkably high µFE of 41.4–43.7 cm2 V−1 s−1, a low subthreshold swing (SS) of 0.24–0.25 V decade−1, an initial threshold voltage (Vth) of −0.9 to −1.0 V, and a slight Vth shift (0.01 V) under the positive bias temperature stability (PBTS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.