Chemokines are chemo-attractants for leukocyte trafficking, growth, and activation in injured and inflammatory tissues. The chemokine system is comprised of 50 chemokine ligands and 20 cognate chemokine receptors. In the context of liver diseases, leukocytes, hepatocytes, hepatic stellate cells, endothelial cells, and vascular smooth muscle cells are capable of producing chemokines. Chemokine receptors are typically expressed in various leukocyte subsets. Given that inflammation is a critical factor for the transition from simple steatosis to non-alcoholic steatohepatitis (NASH), and fibrosis, the chemokine system may play a prominent role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Indeed, accumulating evidence shows elevated expression of chemokines and their receptors in the livers of obese patients with advanced steatosis and NASH. This chapter will discuss the underlying molecular mechanisms and the therapeutic potential of the chemokine systems in the pathogenesis of NAFLD. Among chemokines, we will highlight CCL2, CCL5, CXCL8-10, CX3CL1, and CXCL16 as pivotal mediators in the development of steatosis, NASH, and fibrosis.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and scientific studies consistently report that NAFLD development can be accelerated by oxidative stress. Oxidative stress can induce the progression of NAFLD to NASH by stimulating Kupffer cells, hepatic stellate cells, and hepatocytes. Therefore, studies are underway to identify the role of antioxidants in the treatment of NAFLD. In this review, we have summarized the origins of reactive oxygen species (ROS) in cells, the relationship between ROS and NAFLD, and have discussed the use of antioxidants as therapeutic agents for NAFLD.
Interleukin-32 (IL-32) is a multifaceted cytokine that promotes inflammation and regulates vascular endothelial cell behavior. Although some IL-32 isoforms have been reported to contribute to vascular inflammation and atherosclerosis, the functional role of IL-32α in vascular inflammation and atherogenesis has not been studied.Methods: IL-32α function was assessed in cells with transient IL-32α overexpression or treated with recombinant human IL-32α by western blotting and mRNA expression analysis. Vascular smooth muscle cell (VSMC) proliferation and migration was examined by BrdU incorporation and wound healing assays, respectively. In addition, the participation of IL-32α on vascular inflammation, arterial wall thickening, and atherosclerosis in vivo was monitored in human IL-32α transgenic (hIL-32α-Tg) mice with or without ApoE knockout (ApoE-/-/hIL-32α-Tg).Results: Our analyses showed that IL-32α suppresses genes involved in the inflammatory and immune responses and cell proliferation, and by limiting matrix metalloproteinase (MMP) function. In vivo, administration of hIL-32α inhibited vascular inflammation and atherosclerosis in hIL-32α-Tg and ApoE-/-/hIL-32α-Tg mice. Subsequent microarray and in silico analysis also revealed a marked decreased in inflammatory gene expression in hIL-32α-Tg mice. Collectively, our studies demonstrated that IL-32α upregulates the atheroprotective genes Timp3 and Reck by downregulating microRNA-205 through regulation of the Rprd2-Dgcr8/Ddx5-Dicer1 biogenesis pathway.Conclusion: Our findings provide the first direct evidence that IL-32α is an anti-inflammatory and anti-atherogenic cytokine that may be useful as a diagnostic and therapeutic protein in atherosclerosis.
Excessive alcohol consumption leads to chronic liver diseases. Macrophage-inducible C-type lectin (Mincle) is a C-type lectin receptor that recognizes spliceosome-associated protein 130 (SAP130) known as an endogenous ligand released from dying cells. The aim was to examine the role of Mincle-SAP130 in the pathogenesis of alcoholic liver disease. Alcohol-induced liver injury was induced in wild-type (WT) and Mincle knockout (KO) mice by using a chronic-binge ethanol-feeding model. Mincle KO mice showed significant lower hepatic steatosis, inflammation with neutrophil infiltration, and fibrosis compared with WT mice after alcohol feeding. In contrast, Mincle activation exacerbated alcohol-induced liver injury. Kupffer cells (KCs) are major sources of Mincle. IL-1β expression was significantly down-regulated in Mincle KO mice compared with that in WT mice after alcohol consumption. Interestingly, expression and production of IL-1β were significantly decreased in SAP130-treated KCs isolated from leucine-rich-containing family pyrin domain containing-3-deficient mice compared with those in WT KCs. Such results were also observed in cells treated with SAP130 plus Syk inhibitor. Furthermore, infiltration of invariant natural killer T cells was decreased in livers of Mincle KO mice. Finally, inhibition of Syk signaling ameliorated alcohol-induced liver injury. Collectively, these results demonstrated that interaction between Mincle and SAP130 may promote the progression of alcoholic liver disease by IL-1β production in KCs and consequently increase inflammatory immune cell infiltration.
Rationale: Chitinase 3-like 1 (Chi3L1) protein is up-regulated in various diseases including solid cancers. According to Genome-Wide Association Study (GWAS)/Online Mendelian Inheritance in Man (OMIM)/Differentially Expressed Gene (DEG) analyses, Chi3L1 is associated with 38 cancers, and more highly associated with cancer compared to other oncogenes such as EGFR, TNFα, etc. However, the mechanisms and pathways by which Chi3L1 is associated with cancer are not clear. In current study, we investigated the role of Chi3L1 in lung metastasis.Methods: We performed the differentially expressed gene analysis to explore the genes which are associated with Chi3L1 using the web-based platform from Biomart. We investigated the metastases in lung tissues of C57BL/6 mice injected with B16F10 melanoma following treatment with Ad-shChi3L1. We also investigated the expression of USF1 and Chi3L1 in Chi3L1 KD mice lung tissues by Western blotting and IHC. We also analyzed lung cancer cells metastases induced by Chi3L1 using migration and cell proliferation assay in human lung cancer cell lines. The involvement of miR-125a-3p in Chi3L1 regulation was determined by miRNA qPCR and luciferase reporter assay.Results: We showed that melanoma metastasis in lung tissues was significantly reduced in Chi3L1 knock-down mice, accompanied by down-regulation of MMP-9, MMP-13, VEGF, and PCNA in Chi3L1 knock-down mice lung tissue, as well as in human lung cancer cell lines. We also found that USF1 was conversely expressed against Chi3L1. USF1 was increased by knock-down of Chi3L1 in mice lung tissues, as well as in human lung cancer cell lines. In addition, knock-down of USF1 increased Chi3L1 levels in addition to augmenting metastasis cell migration and proliferation in mice model, as well as in human cancer cell lines. Moreover, in human lung tumor tissues, the expression of Chi3L1 was increased but USF1 was decreased in a stage-dependent manner. Finally, Chi3L1 expression was strongly regulated by the indirect translational suppressing activity of USF1 through induction of miR-125a-3p, a target of Chi3L1.Conclusion: Metastases in mice lung tissues and human lung cancer cell lines were decreased by KD of Chi3L1. USF1 bound to the Chi3L1 promoter, however, Chi3L1 expression was decreased by USF1, despite USF1 enhancing the transcriptional activity of Chi3L1. We found that USF1 induced miR-125a-3p levels which suppressed Chi3L1 expression. Ultimately, our results suggest that lung metastasis is suppressed by knock-down of Chi3L1 through miR-125a-3p-mediated up-regulation of USF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.