Shape memory alloy (SMA) wire-based soft actuators have had their performance limited by the small stroke of the SMA wire embedded within the polymeric matrix. This intrinsically links the bending angle and bending force in a way that made SMA-based soft grippers have relatively poor performance versus other types of soft actuators. In this work, the use of free-sliding SMA wires as tendons for soft actuation is presented that enables large increases in the bending angle and bending force of the actuator by decoupling the length of the matrix and the length of the SMA wires while also allowing for the compact packaging of the driving SMA wires. Bending angles of 400° and tip forces of 0.89 N were achieved by the actuators in this work using a tendon length up to 350 mm. The tendons were integrated as a compact module using bearings that enables the actuator to easily be implemented in various soft gripper configurations. Three fingers were used either in an antagonistic configuration or in a triangular configuration and the gripper was shown to be capable of gripping a wide range of objects weighing up to 1.5 kg and was easily installed on a robotic arm. The maximum pulling force of the gripper was measured to be 30 N.
This paper introduces the addition of torsional prestrain into the manufacturing process of shape memory alloy (SMA) springs to form torsionally prestrained SMA springs. These springs have a better performance at the same power input for the same loads and same coil dimensions as regular SMA springs. A modified thermoconstitutive model was presented that can predict the behavior of the actuator based on the amount of torsional prestrain added into the manufacturing process, and a simple two-state model is used to predict its actuation stroke. These improved actuators were used in the development of a tensegrity robots capable of fast rolling motions and jumping both vertically and horizontally. This robot is capable of rolling at 0.14 BL/s (body length per second) and can jump up to nearly a full body length.
Shape memory alloy (SMA)-based soft actuators and grippers have generally used SMA wires due to design restrictions, limited actuation force and poor cooling performance of SMA springs. This work demonstrates that SMA springs can be used for high performance soft actuation by positioning them externally as a tendon with the force transmitted to the polymeric matrix using a tendon. Through improvements by using active cooling through fans, a spring longer than the matrix and a matrix with a trapezoidal cross-section, the actuator was capable of cyclic actuation at 0.25 Hz, a bending angle of 270°and a tip force of 0.21 N. The same actuator design was used to build a soft robotic gripper capable of grasping objects with a wide range of shapes and weights, and its maximum pull-off force was measured to be 30 N. The gripper was also capable of holding a weight of 2 kg. The increased design freedom of the proposed design would also enable further improvements to the bending and grasping performance of the actuator, and the use of SMA-based soft actuation to more complex designs and a wider range of robotic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.