Serum concentrations of total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with serum lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 × 10-8), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (e.g., CYP7A1, NPC1L1, and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and impact lipid traits in three non-European populations (East Asians, South Asians, and African Americans). Our results identify several novel loci associated with serum lipids that are also associated with CAD. Finally, we validated three of the novel genes—GALNT2, PPP1R3B, and TTC39B—with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
The genetic architecture of common traits, including the number,
frequency, and effect sizes of inherited variants that contribute to individual
risk, has been long debated. Genome-wide association studies have identified
scores of common variants associated with type 2 diabetes, but in aggregate,
these explain only a fraction of heritability. To test the hypothesis that
lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES
consortia performed whole genome sequencing in 2,657 Europeans with and without
diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral
groups. To increase statistical power, we expanded sample size via genotyping
and imputation in a further 111,548 subjects. Variants associated with type 2
diabetes after sequencing were overwhelmingly common and most fell within
regions previously identified by genome-wide association studies. Comprehensive
enumeration of sequence variation is necessary to identify functional alleles
that provide important clues to disease pathophysiology, but large-scale
sequencing does not support a major role for lower-frequency variants in
predisposition to type 2 diabetes.
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in East Asian populations. The first stage meta-analysis of eight T2D genome-wide association studies (6,952 cases and 11,865 controls) was followed by a second stage in silico replication analysis (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which were mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3. GLIS3, involved in pancreatic beta cell development and insulin gene expression1,2, is known for its association with fasting glucose levels3,4. The evidence of T2D association for PEPD5 and HNF4A6,7 has been detected in previous studies. KCNK16 may regulate glucose-dependent insulin secretion in the pancreas. These findings derived from East Asians provide new perspectives on the etiology of T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.