The p-type GaN epilayers were prepared by metalorganic chemical vapor deposition and subsequently Mn+ ions implanted. The properties of Mn+ ions-implanted GaN epilayers were investigated by optical and magnetic measurements. The results of photoluminescence measurement show that optical transitions related to Mn apparently appear at 2.5 eV and around 3.0 eV. It is confirmed that the photoluminescence peak at 2.5 eV is a donor–Mn acceptor transition. Ferromagnetic hysteresis loop was observed, and the temperature-dependent magnetization displayed a ferromagnetic behavior persisting up to ∼270 K.
Nanocrystalline (nc) -Si was grown on SiO2 by rapid thermal chemical vapor deposition. The tunneling oxide layer of a thickness of 4 nm was formed on p-type Si(100) by rapid thermal oxidation at 1050 °C for 30 s. Metal–oxide–semiconductor (MOS) structures were fabricated and capacitance–voltage characterization was carried out to study the memory effects of the nc-Si embedded in the MOS structure. We found the memory effect to be dominantly related to hydrogen-related traps, in addition to being influenced by the three-dimensional quantum confinement and Coulomb charge effects. Deep level transient spectroscopy reveal that the activation energies of the hydrogen-related traps are Ev+0.29 eV (H1) and Ev+0.42 eV (H2), and the capture cross sections are 4.70×10−16 cm2 and 1.44×10−15 cm2, respectively. The presence of Si–H and Si–H2 bonds was confirmed by Fourier transform infrared spectroscopy.
The enhanced positive magnetoresistance effect has been observed in GaAs containing nanoscale magnetic clusters. The ferromagnetic metallic clusters were embedded into GaAs by Mn ion implantation and rapid thermal annealing. Positive magnetoresistance in these structures has been observed and attributed to the enhanced geometric magnetoresistance effect in inhomogeneous semiconductors with metallic inclusions. The additional enhancement of positive magnetoresistance under light illumination is due to the higher mobility of photoexcited electrons in comparison with the mobility of holes in p-type GaAs prepared by Mn ion implantation.
N and Mn ions were co-implanted into p-type GaN and subsequently annealed at 700–900 °C. Compared with Mn-implanted sample, the (Mn+N)-implanted sample revealed a larger ferromagnetic signal. This was attributed to the increase of Ga–Mn magnetic phases. Mn–N compounds, such as Mn6N2.58 and Mn3N2, decreased and the resistivity significantly increased, meaning a reduction of N vacancies. It is suggested that enhancement in ferromagnetic properties in the (Mn+N)-implanted GaN originated from the reduction of N vacancies and the increase of Ga–Mn magnetic phases.
We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.