We propose that rDNA epigenetic expression patterns established even in F(1) hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older.
We analyzed nuclear ribosomal DNA (rDNA) transcription and chromatin condensation in individuals from several populations of Tragopogon mirus and T. miscellus, allotetraploids that have formed repeatedly within only the last 80 years from T. dubius and T. porrifolius and T. dubius and T. pratensis, respectively. We identified populations with no (2), partial (2), and complete (4) nucleolar dominance. It is probable that epigenetic regulation following allopolyploidization varies between populations, with a tendency toward nucleolar dominance by one parental homeologue. Dominant rDNA loci are largely decondensed at interphase while silent loci formed condensed heterochromatic regions excluded from nucleoli. Those populations where nucleolar dominance is fixed are epigenetically more stable than those with partial or incomplete dominance. Previous studies indicated that concerted evolution has partially homogenized thousands of parental rDNA units typically reducing the copy numbers of those derived from the T. dubius diploid parent. Paradoxically, despite their low copy number, repeats of T. dubius origin dominate rDNA transcription in most populations studied, i.e., rDNA units that are genetic losers (copy numbers) are epigenetic winners (high expression). E PIGENETIC silencing of parental genes is an important feature of newly established allopolyploids and is believed to reconcile regulatory incompatibilities between parental subgenomes (Adams and Wendel 2005;Birchler et al., 2005). Nucleolus organizer regions (NORs) contain tandemly arranged highly reiterated ribosomal rRNA genes coding for 18S-5.8S-26S rRNA whose expression is under epigenetic control (Pikaard 2000; for review see Neves et al. 2005). Indeed nucleolar dominance (ND) was one of the first examples of differential gene expression discovered in plant hybrids nearly a century ago (Navashin 1934). Numerous studies in both plants and animals support the view that ND/rRNA gene silencing may be stable or unstable, partial, or reversible (Volkov et al. 2007). In Arabidopsis and Brassica biochemical (Chen and Pikaard 1997a) and genetic (Lawrence et al. 2004;Probst et al. 2004) studies provided evidence that rRNA silencing depends on epigenetic factors, including DNA methylation and histone acetylation (for review see Preuss and Pikaard 2007). Other factors may also play a role in ND, e.g., the position of rRNA genes in the nucleus (Shaw and Jordan 1995), the relative amount of heterochromatin (Viegas et al. 2002), and the activity of unlinked genes . Despite considerable progress in our understanding of ND, little is known about the relationship between ND and sequence homogenization, particularly in young populations of newly formed polyploidy species. The goal of this article is to study this relationship and the inheritance patterns of ND and sequence homogenization at individual and population levels in recently formed allotetraploid species.Besides epigenetic silencing homogenization of repeats seems to be another interesting aspect of rDNA...
In pentaploid dogroses, Rosa section Caninae (2n=5x=35), the pollen transmits one basic genome (x=7) derived from the seven segregating bivalents, whereas the egg transmits four basic genomes (4x=28) one set derived from the segregation of seven bivalents and three sets of univalent-forming chromosomes. Chromosomes from all five genomes carry 18-5.8-26S nuclear ribosomal DNA (rDNA) sites. This mode of sexual reproduction, known as permanent odd polyploidy, can potentially lead to the independent evolution of rDNA on bivalent- and univalent-forming chromosomes. To test this hypothesis, we analyzed rRNA gene families in pollen and somatic leaf tissue of R. canina, R. rubiginosa and R. dumalis. Six major rRNA gene families (alpha, beta, beta' gamma, delta and epsilon) were identified based on several highly polymorphic sites in the internal transcribed spacers (ITSs). At least two of the major rRNA gene families were found in each species indicating that rDNAs have not been homogenized across subgenomes. A comparison of ITS1 sequences from leaf and pollen showed differences: the shared beta rRNA gene family was more abundant among pollen clones compared to leaf clones and must constitute a major part of the rDNA loci on bivalent-forming chromosomes. The gamma and delta families were underrepresented in pollen genomes and are probably located predominantly (or solely) on the univalents. The results support the hypothesis that pentaploid dogroses inherited a bivalent-forming genome from a common proto-canina ancestor, a likely donor of the beta rDNA family. Allopolyploidy with distantly related species is likely to have driven evolution of Rosa section Caninae.
Luzula spp, like the rest of the members of the Juncaceae family, have holocentric chromosomes. Using the rice 155-bp centromeric tandem repeat sequence (RCS2) as a probe, we have isolated and characterized a 178-bp tandem sequence repeat (LCS1) from Luzula nivea. The LCS1 sequence is present in all Luzula species tested so far (except L. pilosa) and like other satellite repeats found in heterochromatin, the cytosine residues are methylated within the LCS1 repeats. Using fluorescent in situ hybridization (FISH) experiments we have shown that there are at least 5 large clusters of LCS1 sequences distributed at heterochromatin regions along each of the 12 chromosomes of L. nivea. We have shown that a centromeric antibody Skp1 co-localizes with these heterochromatin regions and with the LCS1 sequences. This suggests that the LCS1 sequences are part of regions which function as centromeres on these holocentric chromosomes. Furthermore, using the BrdU assay to identify replication sites, we have shown that these heterochromatin sites containing LCS1 associate when being replicated in root interphase nuclei. Our results also show premeiotic chromosome association during anther development as indicated by single-copy BAC in situ and the presence of fewer LCS1 containing heterochromatin sites in these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.