Image super-resolution has become an important technology recently, especially in the medical and industrial fields. As such, much effort has been given to develop image super-resolution algorithms. A recent method used was convolutional neural network (CNN) based algorithms. super-resolution convolutional neural network (SRCNN) was the pioneer of CNN-based algorithms, and it continued being improved till today through different techniques. The techniques included the type of loss functions used, upsampling module deployed, and the adopted network design strategies. In this paper, a total of 18 articles were selected through the PRISMA standard. A total of 19 algorithms were found in the selected articles and were reviewed. A few aspects are reviewed and compared, including datasets used, loss functions used, evaluation metrics applied, upsampling module deployed, and adopted design techniques. For each upsampling module and design techniques, their respective advantages and disadvantages were also summarized.
In some applications, such as surveillance and biometrics, image enlargement is required to inspect small details on the image. One of the image enlargement approaches is by using convolutional neural network (CNN)-based super-resolution construction from a single image. The first CNN-based image superresolution algorithm is the super-resolution CNN (SRCNN) developed in 2014. Since then, many researchers have proposed several versions of CNN-based algorithms for image super-resolution to improve the accuracy or reduce the model's running time. Currently, some algorithms still suffered from the vanishing-gradient problem and relied on a large number of layers. Thus, the motivation of this work is to reduce the vanishinggradient problem that can improve the accuracy, and at the same time, reduce the running time of the model. In this paper, an enhanced dense space attention network (EDSAN) model is proposed to overcome the problems. The EDSAN model adopted a dense connection and residual network to utilize all the features to correlate the low-level feature and high-level feature as much as possible. Besides, implementing the convolution block attention module (CBAM) layer and multiscale block (MSB) helped reduce the number of layers required to achieve comparable results. The model is evaluated through peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics. EDSAN achieved the most significant improvement, about 1.42% when compared to the CRN model using the Set5 dataset at a scale factor of 3. Compared to the ERN model, EDSAN performed the best, with a 1.22% improvement made when using the Set5 dataset at a scale factor of 4. In terms of overall performance, EDSAN performed very well in all datasets at a scale factor of 2 and 3. In conclusion, EDSAN successfully solves the problems above, and it can be used in different applications such as biometric identification applications and real-time video applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.