Modern distribution networks face an increasing number of challenges in maintaining balanced grid voltages because of the rapid increase in single-phase distributed generators. Because of the proliferation of inverter-based resources, such as photovoltaic (PV) resources, in distribution networks, a novel method is proposed for mitigating voltage unbalance at the point of common coupling by tuning the volt–var curve of each PV inverter through a day-ahead deep reinforcement learning training platform with forecast data in a digital twin grid. The proposed strategy uses proximal policy optimization, which can effectively search for a global optimal solution. Deep reinforcement learning has a major advantage in that the calculation time required to derive an optimal action in the smart inverter can be significantly reduced. In the proposed framework, multiple agents with multiple inverters require information on the load consumption and active power output of each PV inverter. The results demonstrate the effectiveness of the proposed control strategy on the modified IEEE 13 standard bus systems with time-varying load and PV profiles. A comparison of the effect on voltage unbalance mitigation shows that the proposed inverter can address voltage unbalance issues more efficiently than a fixed droop inverter.
This paper proposes a recurrent neural network (RNN)-based maximum frequency deviation forecasting model for power systems with high photovoltaic power (PV) penetration. The proposed RNN model extracts the nonlinear features and invariant structures exhibited in regional PV power output data and time-variable frequency data in case of contingency. To capture the regularity and random characteristics of PV power output, a probability power flow-dynamic tool (PPDT) for uncertain power system modeling has been developed. This tool considers all possible combinations of PV power generation patterns, even those with low probability, such as those caused by passing clouds. The results are verified by a comparison of various artificial intelligence methods using case studies from the South Korean power system. An online dispatch algorithm that considers the frequency constraints for a designated contingency can be implemented by using the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.