A B S T R A C TAn edge finite-element method has been applied to compute magnetotelluric (MT) responses to three-dimensional (3D) earth topography. The finite-element algorithm uses a single edge shape function at each edge of hexahedral elements, guaranteeing the continuity of the tangential electric field while conserving the continuity of magnetic flux at boundaries. We solve the resulting system of equations using the biconjugate gradient method with a Jacobian preconditioner. The solution gives electric fields parallel to the slope of a surface relief that is often encountered in MT surveys. The algorithm is successfully verified by comparison with other numerical solutions for a 3D-2 model for comparison of modelling methods for EM induction and a ridge model. We use a 3D trapezoidal-hill model to investigate 3D topographic effects, which are caused mainly by galvanic effects, not only in the Zxy mode but also in the Zyx mode. If a 3D topography were approximated by a two-dimensional topography therefore errors occurring in the transverse electric mode would be more serious than those in the transverse magnetic mode.
We have developed a three‐dimensional inverse scheme for carrying out DC resistivity surveys, incorporating complicated topography as well as arbitrary electrode arrays. The algorithm is based on the finite‐element approximation to the forward problem, so that the effect of topographic variation on the resistivity data is effectively evaluated and incorporated in the inversion. Furthermore, we have enhanced the resolving power of the inversion using the active constraint balancing method. Numerical verifications show that a correct earth image can be derived even when complicated topographic variation exists. By inverting the real field data acquired at a site for an underground sewage disposal plant, we obtained a reasonable image of the subsurface structures, which correlates well with the surface geology and drill log data.
BackgroundPeste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR.MethodsIn this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV.ResultsThe sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus.ConclusionsThese features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.Electronic supplementary materialThe online version of this article (doi:10.1186/s12985-017-0688-6) contains supplementary material, which is available to authorized users.
This paper presents a simple, generalized parameter constraint using a priori information to obtain a stable inverse of geophysical data. In the constraint the a priori information can be expressed by two limits: lower and upper bounds. This is a kind of inequality constraint, which is usually employed in linear programming. In this paper, we have derived this parameter constraint as a generalized version of positiveness constraint of parameter, which is routinely used in the inversion of electrical and EM data. However, the two bounds are not restricted to positive values. The width of two bounds reflects the reliability of ground information, which is obtained through well logging and surface geology survey. The effectiveness and convenience of this inequality constraint is demonstrated through the smoothness-constrained inversion of synthetic magnetotelluric data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.