We report metal-free synthesis of high-density single-crystal elementary semiconductor nanowires with tunable electrical conductivities and systematic diameter control with narrow size distributions. Single-crystal silicon and germanium nanowires were synthesized by nucleation on nanocrystalline seeds and subsequent one-dimensional anisotropic growth without using external catalyst. Systematic control of the diameters with tight distribution and tunable doping concentration were realized by adjusting the growth conditions, such as growth temperature and ratio of precursor partial pressures. We also demonstrated both n-type and ambipolar field effect transistors using our undoped and phosphorus-doped metal-free silicon nanowires, respectively. This growth approach offers a method to eliminate potential metal catalyst contamination and thus could serve as an important point for further developing nanowire nanoelectronic devices for applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.