Protein cage nanoparticles are widely used as targeted delivery nanoplatforms, because they have well‐defined symmetric architectures, high biocompatibility, and enough plasticity to be modified to produce a range of different functionalities. Targeting peptides and ligands are often incorporated on the surface of protein cage nanoparticles. In this research, we adopted the SpyTag/SpyCatcher protein ligation system to covalently display target‐specific affibody molecules on the exterior surface of bacteriophage P22 virus‐like particles (VLP) and evaluated their modularity and efficacy of targeted delivery. We genetically introduced the 13 amino acid SpyTag peptide into the C‐terminus of the P22 capsid protein to construct a target‐tunable nanoplatform. We constructed two different SpyCatcher‐fused affibody molecules as targeting ligands, SC‐EGFRAfb and SC‐HER2Afb, which selectively bind to EGFR and HER2 surface markers, respectively. We produced target‐specific P22 VLP‐based delivery nanoplatforms for the target cell lines by selectively combining SpyTagged P22 VLP and SC‐fused affibody molecules. We confirmed its target‐switchable modularity through cell imaging and verified the target‐specific drug delivery efficacy of the affibody molecules displaying P22 VLP using cell viability assays. The P22 VLP‐based delivery nanoplatforms can be used as multifunctional delivery vehicles by ligating other functional proteins, as well as affibody molecules. The interior cavity of P22 VLP can be also used to load cargoes like enzymes and therapeutic proteins. We anticipate that the nanoplatforms will provide new opportunities for developing target‐specific functional protein delivery systems.
The selective detection of specific cells of interest and their effective visualization is important but challenging, and fluorescent cell imaging with target-specific probes is commonly used to visualize cell morphology and components and to track cellular processes. Multiple displays of two or more targeting ligands on a polyvalent single template would make it possible to construct versatile multiplex fluorescent cell imaging probes that can visualize two or more target cells individually without the need for a set of individual probes. To achieve this goal, we used encapsulin, a new class of protein cage nanoparticles, as a template and implanted dual targeting capability by presenting two different affibody molecules on a single encapsulin protein cage nanoparticle post-translationally. Encapsulin was self-assembled from 60 identical subunits to form a hollow and symmetric spherical structure with a uniform size. We genetically inserted SpyTag peptides onto the encapsulin surface and prepared various SpyCatcher-fused proteins, such as fluorescent proteins and targeting affibody molecules. We successfully displayed fluorescent proteins and affibody molecules together on a single encapsulin in a mix-and-match manner post-translationally using bacterial superglue, the SpyTag/SpyCatcher ligation system, and demonstrated that these dual functional encapsulins can be used as target-specific fluorescent cell imaging probes. Dual targeting protein cage nanoparticles were further constructed by ligating two different affibody molecules onto the encapsulin surface with fluorescent dyes, and they effectively recognized and bound to two individual targeting cells independently, which could be visualized by selective colors on demand.
Simple plug-and-playable fluorescent cell imaging modular toolkits are established using the bacterial superglue SpyTag/SpyCatcher protein ligation system. A variety of affibody-fluorescent protein conjugates (AFPCs) are post-translationally generated via the isopeptide bond formation, and each AFPC effectively recognizes and binds to its targeting cells, visualizing them with selective colors on demand.
Protein cage nanoparticles have a unique spherical hollow structure that provides a modifiable interior space and an exterior surface. For full application, it is desirable to utilize both the interior space and the exterior surface simultaneously with two different functionalities in a well-combined way. Here, we genetically engineered encapsulin protein cage nanoparticles (Encap) as modular nanoplatforms by introducing a split-C-intein (IntC) fragment and SpyTag into the interior and exterior surfaces, respectively. A complementary split-N-intein (IntN) was fused to various protein cargoes, such as NanoLuc luciferase (Nluc), enhanced green fluorescent protein (eGFP), and Nluc-miniSOG, individually, which led to their successful encapsulation into Encaps to form Cargo@Encap through split intein-mediated protein ligation during protein coexpression and cage assembly in bacteria. Conversely, the SpyCatcher protein was fused to various protein ligands, such as a glutathione binder (GST-SC), dimerizing ligands (FKBP12-SC and FRB-SC), and a cancer-targeting affibody (SC-EGFRAfb); subsequently, they were displayed on Cargo@Encaps through SpyTag/SpyCatcher ligation to form Cargo@Encap/Ligands in a mix-and-match manner. Nluc@Encap/glutathione-S-transferase (GST) was effectively immobilized on glutathione (GSH)-coated solid supports exhibiting repetitive and long-term usage of the encapsulated luciferases. We also established luciferase-embedded layer-by-layer (LbL) nanostructures by alternately depositing Nluc@Encap/FKBP12 and Nluc@Encap/FRB in the presence of rapamycin and applied enhanced green fluorescent protein (eGFP)@Encap/EGFRAfb as a target-specific fluorescent imaging probe to visualize specific cancer cells selectively. Modular functionalization of the interior space and the exterior surface of a protein cage nanoparticle may offer the opportunity to develop new protein-based nanostructured devices and nanomedical tools.
A recombinant target-specific signal amplifier was constructed by genetically fusing the enhanced ascorbate peroxidase 2 (APEX2) and an antibody-binding domain (ABD). The fusion protein APEX2-ABD possessed the peroxidase activity and the antibody-binding capability simultaneously and replaced the conventional HRP-conjugated secondary antibodies in a TSA assay for amplifying fluorescence signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.