Metabolic syndrome (MS) is diagnosed using absolute criteria that do not consider age and sex, but most studies have shown that the prevalence of MS increases with age in both sexes. Thus, the evaluation of MS should consider sex and age. We aimed to develop a new index that considers the age and sex for evaluating an individual’s relative overall MS status. Data of 16,518,532 subjects (8,671,838 males and 7,846,694 females) who completed a validated health survey of the National Health Insurance Service of the Republic of Korea (2014‒2015) were analyzed to develop an MS-biological age model. Principal component score analysis using waist circumference, pulse pressure, fasting blood sugar, triglyceride levels, and high-density lipoprotein level, but not age, as independent variables were performed to derive an index of health status and biological age. In both sexes, the age according to the MS-biological age model increased with rising smoking and alcohol consumption habits and decreased with rising physical activity. Particularly, smoking and drinking affected females, whereas physical activity affected males. The MS-biological age model can be a supplementary tool for evaluating and managing MS, quantitatively measuring the effect of lifestyle changes on MS, and motivating patients to maintain a healthy lifestyle.
In this work, we used the health check-up data of more than 111,000 subjects for analysis, using only the data with all 35 variables entered. For the prediction of biological age, traditional statistical methods and four AI techniques (RF, XGB, SVR, and DNN), which are widely used recently, were simultaneously used to compare the predictive power. This study showed that AI models produced about 1.6 times stronger linear relationship on average than statistical models. In addition, the regression analysis on the predicted BA and CA revealed similar differences in terms of both the correlation coefficients (linear model: 0.831, polynomial model: 0.996, XGB model: 0.66, RF model: 0.927, SVR model: 0.787, DNN model: 0.998) and R2 values. Through this work, we confirmed that AI techniques such as the DNN model outperformed traditional statistical methods in predicting biological age.
Background Chronic disease management is a major health issue worldwide. With the paradigm shift to preventive medicine, disease prediction modeling using machine learning is gaining importance for precise and accurate medical judgement. Objective This study aimed to develop high-performance prediction models for 4 chronic diseases using the common data model (CDM) and machine learning and to confirm the possibility for the extension of the proposed models. Methods In this study, 4 major chronic diseases—namely, diabetes, hypertension, hyperlipidemia, and cardiovascular disease—were selected, and a model for predicting their occurrence within 10 years was developed. For model development, the Atlas analysis tool was used to define the chronic disease to be predicted, and data were extracted from the CDM according to the defined conditions. A model for predicting each disease was built with 4 algorithms verified in previous studies, and the performance was compared after applying a grid search. Results For the prediction of each disease, we applied 4 algorithms (logistic regression, gradient boosting, random forest, and extreme gradient boosting), and all models show greater than 80% accuracy. As compared to the optimized model’s performance, extreme gradient boosting presented the highest predictive performance for the 4 diseases (diabetes, hypertension, hyperlipidemia, and cardiovascular disease) with 80% or greater and from 0.84 to 0.93 in area under the curve standards. Conclusions This study demonstrates the possibility for the preemptive management of chronic diseases by predicting the occurrence of chronic diseases using the CDM and machine learning. With these models, the risk of developing major chronic diseases within 10 years can be demonstrated by identifying health risk factors using our chronic disease prediction machine learning model developed with the real-world data–based CDM and National Health Insurance Corporation examination data that individuals can easily obtain.
BACKGROUND Chronic disease management is a major health issue worldwide. OBJECTIVE This study suggests the possibility of preemptive management of chronic diseases by predicting the occurrence of chronic diseases using CDM and machine learning. In this study, four major chronic diseases, namely, diabetes, hypertension, hyperlipidemia, and cardiovascular disease, were selected and a model for predicting their occurrence within 10 years was developed. METHODS We used 4 algorithms to predict disease occurrence. RESULTS XGBoost presented the highest predictive performance for the 4 diseases (diabetes, hypertension, hyperlipidemia, cardiovascular disease) of 80% or more —0.84 to 0.93 in AUC standards—showing the best performance. CONCLUSIONS Through the chronic disease prediction machine learning model developed in this study using RWD-based CDM, even with the National Health Insurance Corporation examination data that can be easily obtained by individuals, the risk of major chronic diseases within 10 years Demonstrate that you can specifically identify your health risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.