Aerosol radiative forcing is a critical, though variable and uncertain, component of the global climate. Yet climate models rely on sparse information of the aerosol optical properties. In situ measurements, though important in many respects, seldom provide measurements of the undisturbed aerosol in the entire atmospheric column. Here, 8 yr of worldwide distributed data from the AERONET network of ground-based radiometers were used to remotely sense the aerosol absorption and other optical properties in several key locations. Established procedures for maintaining and calibrating the global network of radiometers, cloud screening, and inversion techniques allow for a consistent retrieval of the optical properties of aerosol in locations with varying emission sources and conditions. The multiyear, multi-instrument observations show robust differentiation in both the magnitude and spectral dependence of the absorption-a property driving aerosol climate forcing, for desert dust, biomass burning, urban-industrial, and marine aerosols. Moreover, significant variability of the absorption for the same aerosol type appearing due to different meteorological and source characteristics as well as different emission characteristics are observed. It is expected that this aerosol characterization will help refine aerosol optical models and reduce uncertainties in satellite observations of the global aerosol and in modeling aerosol impacts on climate.
Popular summary.Aerosols, tiny solid or liquid particles suspended in the atmosphere, were once only a side note in the Atmospheric Sciences. Today we realize the importance of aerosols in instigating or mitigating climate change, in modifling clouds and large-scale precipitation patterns and in affecting human health. Unlike greenhouse gases, which are well-mixed and long-lasting in the atmosphere, aerosols are temporally and spatially variable with lifetimes of a few days to a few weeks. Their transient natures make aerosols difficult to characterize and their effects on climate, hydrology and health difficult to model. Satellites provide the best means to observe the global aerosol system and narrow the uncertainties associated with aerosol characterization, but the satellite observations must be sufficiently accurate to be useful. The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites provides a unique tool to discern the global impact of aerosols. The products derived from MODIS data include aerosol optical thickness, which is a measure of aerosol amount, as well as products that describe the size of the aerosol particles. The MODIS aerosol retrievals are continuously evaluated against ground-truth of an existing global network of highly accurate instruments (AERONET). The results show an accuracy for the MODIS aerosol products that will sufficiently narrow the uncertainty of global aerosol characterization. Furthermore, the MODIS derivation of aerosol particle size aids in discriminating between man-made aerosol and naturally produced aerosols. This is a major step forward in narrowing the uncertainties associated with estimating the total anthropogenic effect on climate.
Abstract. Long-term measurements by the AERONET program of spectral aerosol optical depth, precipitable water, and derived Angstrom exponent were analyzed and compiled into an aerosol optical properties climatology. Quality assured monthly means are presented and described for 9 primary sites and 21 additional multiyear sites with distinct aerosol regimes representing tropical biomass burning, boreal forests, midlatitude humid climates, midlatitude dry climates, oceanic sites, desert sites, and background sites. Seasonal trends for each of these nine sites are discussed and climatic averages presented. IntroductionMan is altering the aerosol environment through land cover change, combustion of fossil fuels, and the introduction of particulate and gas species to the atmosphere. Each perturbation has some impact on the local aerosol environment. How much aerosol man is contributing to the atmosphere is not •øUniversity of New Mexico, Albuquerque, New Mexico.•qnstituto de Pesquisas Espaciais, Sao Jose dos Campos, San Paolo, Brazil.•2National Oceanic and Atmospheric Administration, Silver Spring, Maryland.•3Scripps Institute of Oceanography, La Jolla, California.•4Department of Applied Science, Brookhaven National Laboratory, Upton, New York.•SNow at Naval Research Laboratory, Washington, D.C.•6Ben Gurion University of the Negev, Sede Boker, Israel.•7CARTEL, Universit6 de Sherbrooke, Sherbrooke, Quebec, Canada.•sSAIC-GSC, Beltsville, Maryland, and NASA GSFC, Greenbelt, The simplest, and, in principle, the most accurate and easy to maintain monitoring systems are ground based. Aerosol optical depth is the single most comprehensive variable to remotely assess the aerosol burden in the atmosphere from groundbased instruments. This variable is used in local investigations to characterize aerosols, assess atmospheric pollution, and make atmospheric corrections to satellite remotely sensed data. It is for these reasons that a record of aerosol optical depth spanning most of the twentieth century has been measured from Sun photometers. The vast majority are site specific, short-term investigations with little relevance for seasonal, annual, or long-term trend analysis, however a few multiyear spatial studies have contributed to our knowledge and experience (Table 1). The following section reviews these investigations, past and present, which significantly addressed long-term measurements over widely distributed locations or provided a significant contribution that allowed development of a network for long-term photometric aerosol observations. The earliest systematic results come from the Smithsonian Institution solar observatories. Roosen e! al. [1973] computed extinction coefficients from 13 widely separated sites during the first half of the twentieth century using spectrobolometer observations by the Astrophysical Observatory of the Smithsonian Institution. They concluded the aerosol burden did not 12,067
Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.