The time-dependent mechanical properties of sheep digital extensor tendons were studied by sequences of stress-relaxation tests. The results exhibited irreversible preconditioning and reversible viscoelasticity. Preconditioning effects were manifested by stress decay during consecutive stretch cycles to the same strain level, accompanied by elongation of the tendon's reference length. They intensified with increased strain level, and were reduced or became negligible as the strain decreased. The significance of intrinsic response mechanisms was studied via a structural model that includes viscoelasticity, preconditioning, and morphology of the tendon's collagen fibers. Model/data comparisons showed good agreement and good predictive power, suggesting that preconditioning can be integrated into comprehensive material characterization of tendons.
The normal coronary artery consists of two mechanically distinct layers: intima-media and adventitia. The objective of this study is to establish a two-layer three-dimensional (3-D) stress-strain relation of porcine coronary arteries. Experimental measurements were made by a series of biaxial tests (inflation and axial extension) of intact coronary arteries and, subsequently, their corresponding intima-media or adventitia layer. The Fung-type exponential strain energy function was used to describe the 3-D strain-stress relation for each layer and the intact wall. A genetic algorithm was used to determine the material constants in the Fung-type constitutive equation by curve fitting the experimental data. Because one layer must be sacrificed before the other layer can be tested, the material property of the missing layer was computed from the material constants of the intact vessel and the tested layer. A total of 20 porcine hearts were used: one group of 10 hearts for the left anterior descending artery and another group of 10 hearts for the right coronary artery. Each group was further divided into two subgroups of five specimens tested for the intact wall and the intima-media layer and for the intact wall and the adventitia layer. Our results show statistically significant differences in the material properties of the two layers. The mathematical model was validated by experimental stress-strain data for individual layers. The validated 3-D constitutive model will serve as a foundation for formulation of layer-specific boundary value problems in coronary physiology and cardiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.