It is hypothesized that (cAMP, ATP) is the elusive, universal Turing morphogenetic couple, which defies the second law of thermodynamics, i.e. the inexorable march towards homogeneity. cAMP and ATP can be distributed nonhomogeneously because the whole of the intermediary metabolism is so organized that they mutually satisfy the Turing bifurcation conditions upon nonlocalized application of an extracellular ligand, in particular a soluble peptide growth factor, which is nature's distinguished universal bifurcation parameter, acting homogeneously in space and removing the substrate inhibition from adenylate cyclase and thus triggering embryonic induction by triggering the (cAMP, ATP) Turing system. The hypothesis predicts that although the extracellular signal, the growth factor, is applied homogeneously, an organized "dissipative structure" will emerge spontaneously in the responding tissue; this "symmetry breaking" in a reaction-diffusion system occurs precisely in the manner envisaged by Turing, where (cAMP, ATP) constitutes the "reaction-diffusion system". This Turing bifurcation explicates the recent experiments where a differentiated embryoid emerges from the mere immersion of frog animal caps in an homogeneous growth factor solution, and similar experiments on chicks. The "metabolic" patterns found by Child and colleagues also reflect dissipative structures arising in a (cAMP, ATP) reaction-diffusion system when interpreted in the light of modern biochemistry: in particular, the localized glycogen depletion reflects localized cAMP; localized redox, respiratory or susceptibility activity reflects localized ATP. The dramatic collapse of organized structure found by Child and colleagues, for example, when Planaria or a section of it is exposed to an homogeneous environment of a narcotic solution, and the reemergence of structure upon return to water, are explained on the basis of the violation or satisfaction of the Turing bifurcation conditions with respect to (cAMP, ATP), respectively. cAMP is the "activator", ATP is the "inhibitor", and together they mutually satisfy the four activator-inhibitor inequalities, including the all-important autocatalytic cAMP production, as well as the lateral inhibition condition. The functional significance of gap junctions is to generate a multicellular purely reaction-diffusion system for (cAMP, ATP) as envisaged by Turing. It is emphasized that localization and pattern formation occur intracellularly in gap junction-coupled cells and not, as often suggested, extracellularly, the latter localization being too fragile to be maintained for long enough, and soon succumbing to the mixing effect of convection and movement. The activator-inhibitor property of (cAMP, ATP) means that the spatial distribution of cAMP and ATP could be not only nonhomogeneous but also of the same shape.(ABSTRACT TRUNCATED AT 400 WORDS)
The central problem in biological development is the understanding of epigenesis. The dominant theory of development in the last 80 years that also purports to explain epigenesis is induction theory. It suggests that development is driven by sequential inductions where each "induction" (in one sense of the word induction) is effected by the action of an inducing part of the embryo on a responding part of the embryo. The theory stems from Spemann and Mangold (W.Roux' Arch.f.Entw.d.Organis.u.mikrosk.Anat.100 (1924) 599) who transplanted a tissue from the dorsal blastopore lip of Triturus into the ventral ectoderm of another gastrula and thus initiated and "induced" (in another sense of the word induction) gastrulation and embryogenesis in the ventral side of the host that became a double embryo (siamese twins). We explain this induction, i.e. the formation of the double embryo, according to the Child theory and the Turing-Gierer-Meinhardt theory when it is also assumed that cAMP and ATP are the Turing activator and inhibitor, respectively. Spemann and Mangold (W.Roux' Arch.f.Entw.d.Organis.u.mikrosk.Anat.100 (1924) 599) also suggested that the ingressing mesoderm induces the overlying ectoderm to form the neural plate and neural tube. This 'neural induction', the 'primary embryonic induction', became the cornerstone of induction theory, i.e. of the sequential induction concept referred to above. But we argue that the metabolic gradients that precede and accompany neurulation, as obtained by Child, also for Triturus, arise through a Turing self-organization if it is assumed that cAMP and ATP are the Turing morphogens, and these gradients are the cause and primary event of neurulation. Thus there is no need to invoke the 'neural induction'. It is argued that fundamental events such as gastrulation and also organ formation are caused by the Turing-Child field and not by sequential induction. Similar principles, such as bud formation caused by a radial metabolic pattern that transforms to a longitudinal pattern, govern the formation, for example, of the mouth and the gut. The formation and localization of bottle cells is explained according to the Child-Turing field and modern biochemistry. The chemical metabolic pre-pattern precedes, and causes, morphogenesis and differentiation as envisaged by Turing. The Spemann and Mangold (W.Roux' Arch.f.Entw.d.Organis.u.mikrosk.Anat.100 (1924) 599) transplantation experiment when performed on a sea urchin duplicates not only the phenotype but also the metabolic (reduction) pattern. These experimental results, by Horstadius, predicted by Child, follow from the Turing-Gierer-Meinhardt theory if it is assumed that cAMP and ATP are the Turing morphogens. If the transplantation is performed not onto the whole sea urchin but onto only a part of it, that manifests only a part of the metabolic pattern, then from the part a phenotypic whole underlain by a normal and a whole metabolic pattern can be rescued. These experimental results of Horstadius follow from Turing theory if cAMP and ATP...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.