Translation is an important stage in gene expression. During this stage, macro-molecules called ribosomes travel along the mRNA strand linking amino acids together in a specific order to create a functioning protein. An important question, related to many biomedical disciplines, is how to maximize protein production. Indeed, translation is known to be one of the most energyconsuming processes in the cell, and it is natural to assume that evolution shaped this process so that it maximizes the protein production rate. If this is indeed so then one can estimate various parameters of the translation machinery by solving an appropriate mathematical optimization problem. The same problem also arises in the context of synthetic biology, namely, re-engineer heterologous genes in order to maximize their translation rate in a host organism. We consider the problem of maximizing the protein production rate using a computational model for translation-elongation called the ribosome flow model (RFM). This model describes the flow of the ribosomes along an mRNA chain of length n using a set of n first-order nonlinear ordinary differential equations. It also includes n þ 1 positive parameters: the ribosomal initiation rate into the mRNA chain, and n elongation rates along the chain sites. We show that the steady-state translation rate in the RFM is a strictly concave function of its parameters. This means that the problem of maximizing the translation rate under a suitable constraint always admits a unique solution, and that this solution can be determined using highly efficient algorithms for solving convex optimization problems even for large values of n. Furthermore, our analysis shows that the optimal translation rate can be computed based only on the optimal initiation rate and the elongation rate of the codons near the beginning of the ORF. We discuss some applications of the theoretical results to synthetic biology, molecular evolution, and functional genomics.
Abstract-In this letter, the subject of turbo coding in the presence of intersymbol interference channel will be investigated. An iterative decoder structure will be presented, which combines the channel equalization and the turbo decoding. At each iteration extrinsic information from the channel detector is fed into the turbo decoders, and then their extrinsic information is fed back to the channel detector. Simulation results are presented for rate 1/2 turbo code with binary phase-shift keying (BPSK) modulation, transmitted over intersymbol interference (ISI) channel having severe frequency distortion. The performance is about 0.8 dB from the ISI channel capacity at bit-error rate of 10 05 .
The asymmetric simple exclusion process (ASEP) is an important model from statistical physics describing particles that hop randomly from one site to the next along an ordered lattice of sites, but only if the next site is empty. ASEP has been used to model and analyze numerous multiagent systems with local interactions including the flow of ribosomes along the mRNA strand. In ASEP with periodic boundary conditions a particle that hops from the last site returns to the first one. The mean field approximation of this model is referred to as the ribosome flow model on a ring (RFMR). The RFMR may be used to model both synthetic and endogenous gene expression regimes. We analyze the RFMR using the theory of monotone dynamical systems. We show that it admits a continuum of equilibrium points and that every trajectory converges to an equilibrium point. Furthermore, we show that it entrains to periodic transition rates between the sites. We describe the implications of the analysis results to understanding and engineering cyclic mRNA translation in-vitro and in-vivo.
Gene translation is a central stage in the intracellular process of protein synthesis. Gene translation proceeds in three major stages: initiation, elongation, and termination. During the elongation step, ribosomes (intracellular macromolecules) link amino acids together in the order specified by messenger RNA (mRNA) molecules. The homogeneous ribosome flow model (HRFM) is a mathematical model of translation-elongation under the assumption of constant elongation rate along the mRNA sequence. The HRFM includes $(n)$ first-order nonlinear ordinary differential equations, where $(n)$ represents the length of the mRNA sequence, and two positive parameters: ribosomal initiation rate and the (constant) elongation rate. Here, we analyze the HRFM when $(n)$ goes to infinity and derive a simple expression for the steady-state protein synthesis rate. We also derive bounds that show that the behavior of the HRFM for finite, and relatively small, values of $(n)$ is already in good agreement with the closed-form result in the infinite-dimensional case. For example, for $(n=15)$, the relative error is already less than 4 percent. Our results can, thus, be used in practice for analyzing the behavior of finite-dimensional HRFMs that model translation. To demonstrate this, we apply our approach to estimate the mean initiation rate in M. musculus, finding it to be around 0.17 codons per second.
During mRNA translation, several ribosomes attach to the same mRNA molecule simultaneously translating it into a protein. This pipelining increases the protein translation rate. A natural and important question is what ribosomal density maximizes the protein translation rate. Using mathematical models of ribosome flow along both a linear and a circular mRNA molecules we prove that typically the steady-state protein translation rate is maximized when the ribosomal density is one half of the maximal possible density. We discuss the implications of our results to endogenous genes under natural cellular conditions and also to synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.