Featured Application: The application of the proposed device is for the energy-harvesting element of a flexible piezoelectric microgenerator. It could serve as a self-sufficient power supply for portable devices working in the frequency range of 10 Hz to 10 kHz, such as biomedical microsensors, tracking devices, and other wearable electronics that are mechanically activated by human motions. Abstract: In this paper, results from the fabrication and study of a piezoelectric microgenerator using nanobranched zinc oxide (ZnO) film grown on poly(3,4-ethylenedioxythiphene) doped with a sulfonate (PEDOT:PSS)-coated flexible substrate are presented. The aim of the study is to extract information about the electrical behavior of the harvester at different frequencies, temperatures, and positions, as related to the ZnO nanostructure, as well as to examine its piezoelectric response. Radiofrequency (RF) sputtering with oxygen deficit during growth on an amorphous sublayer was used to obtain the nanobranched structure. The microdevice was studied at frequencies ranging from 1 Hz to 1 MHz for temperatures in the range of −10 • C to 40 • C, in both a non-bended position, and a radius of curvature position bended to 12 mm. It was found that non-ordered ZnO nanoformations facilitate the dipoles' motion, thus leading to low dielectric losses of 10 −3 , and a higher relative permittivity of ε r~1 5, compared with typically known values. The losses increase with one order of magnitude at bending, but still remain low. Dielectric characteristics indicate that the favorable working range of the microgenerator is within the lower frequency region, from 10 Hz to 10 kHz. The results were confirmed by the measured open circuit voltage, which reaches approximately 1 V within this range, versus 300 mV out of the range.
This paper presents the results of experimental work on thin piezoelectric polyvinylidene fluoride (PVDF) film, used as active layer in piezoelectric transformer. PVDF film was deposited by spray deposition technique on flexible polyethylene terephthalate (PET) substrate and its thickness was measured to be 2 μm. Aluminum (Al) bottom and top contacts were deposited by vacuum thermal evaporation. The transfer function of the transformer was measured at different frequencies in the range 50 Hz – 4 MHz. It was observed that at input frequency of 1 MHz, the transfer function started to decrease, which supposed low-frequency AC/AC transformer. Dielectric losses, which characterize piezoelectric devices’ quality, were less that 0.09 in the whole frequency range. This is proof for the efficient energy conversion and stable operation of the microstructure. The work shows that the PVDF transformer performance is comparable to the existing piezoceramic based transformers, which however suffer of high dielectric losses, signal distortions and relatively low boundary frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.