The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear. Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.
The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.
Aim The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos). Location Europe, west of 64° longitude. Methods We fitted multi‐temporal species distribution models using >50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24‐year period (1992–2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe. Results Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North‐West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation. Main conclusions Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores’ co‐existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy.
The present study describes the use of poison baits against so-called pest species in Greece and explores various aspects of this illegal practice. Data were collected from 2000 to 2016, and a total of 1015 poisoning incidents in rural areas causing the death of 3248 animals were examined. In 58.7% of investigated cases, the motives remained unknown; in the remaining cases, human-wildlife conflicts and retaliatory actions among stakeholders (e.g., hunters vs. livestock breeders) were found to be the main reasons for poison bait use. The target animals for these actions were mainly mammalian carnivores, and stray canids, all of which were blamed for livestock and game losses. Avian scavengers were the wildlife species most affected by secondary poisoning (30% of the wildlife fatalities), whereas shepherd dogs accounted for 66.4% of domestic animal losses. Toxicological analyses showed that a wide range of chemical substances were used, mostly legal or banned pesticides (e.g., carbamates, organophosphates, and organochlorines) and potassium cyanide. Furthermore, the widespread trafficking of black marketed insecticides was also recorded, with methomyl (in powder form) and carbofuran being most common. The majority of poisoning events (72%) took place outside protected areas, while in approximately 73.4% of them, no official reporting to the competent authorities was made. Overall, the study highlights the significant impact of illegal poison bait use on wildlife in Greece and addresses its extreme socioeconomic complexity. The need for an integrated national anti-poison strategy is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.