Theoretical studies of photochemical processes require a description of the energy surfaces of excited electronic states, especially near degeneracies, where transitions between states are most likely. Systems relevant to photochemical applications are typically too large for high-level multireference methods, and while time-dependent density functional theory (TDDFT) is efficient, it can fail to provide the required accuracy. A variational, timeindependent density functional approach is applied to the twisting of the double bond and pyramidal distortion in ethylene, the quintessential model for photochemical studies. By allowing for symmetry breaking, the calculated energy surfaces exhibit the correct topology around the twisted-pyramidalized conical intersection even when using a semilocal functional approximation, and by including explicit self-interaction correction, the torsional energy curves are in close agreement with published multireference results. The findings of the present work point to the possibility of using a single determinant time-independent density functional approach to simulate nonadiabatic dynamics, even for large systems where multireference methods are impractical and TDDFT is often not accurate enough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.