Patients with chronic renal failure show almost equal levels of sodium excreted in the urine as healthy subjects through an increase of the fractional excretion sodium (FE(Na)). The mechanisms of this adaptation, however, are unknown. Recently, urinary arginine vasopressin (AVP) has been shown to inhibit the antidiuretic action of plasma AVP in the collecting ducts of rabbits and rats. In this article, the roles of plasma and urinary AVP are examined with other hormones in the sodium excretion of 57 patients with chronic renal disease. The fractional excretion of AVP, plasma atrial natriuretic peptide (ANP) and endothelin-1 (ET-1), urinary ET-1, and FE(ET-1) correlated with the decrease of creatinine clearance (Ccr). Multiple and stepwise regression analyses showed that FE(AVP) is the major dependent determinant for FE(Na) (adjusted r2 = 0.78). These results suggest that the increase of AVP excretion per remaining nephron could be a cause of the increase of FE(Na) in patients with renal failure. Although plasma AVP works as an antidiuretic hormone, urinary AVP serves as an intrinsic diuretic, especially in patients with chronic renal failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.