The ability to derive predictions for the outcomes of potential actions from observational data is one of the hallmarks of true causal reasoning. We present four learning experiments with deterministic and probabilistic data showing that people indeed make different predictions from causal models, whose parameters were learned in a purely observational learning phase, depending on whether learners believe that an event within the model has been merely observed ("seeing") or was actively manipulated ("doing"). The predictions reflect sensitivity both to the structure of the causal models and to the size of their parameters. This competency is remarkable because the predictions for potential interventions were very different from the patterns that had actually been observed. Whereas associative and probabilistic theories fail, recent developments of causal Bayes net theories provide tools for modeling this competency.
The presentation of a Bayesian inference problem in terms of natural frequencies rather than probabilities has been shown to enhance performance. The effect of individual differences in cognitive processing on Bayesian reasoning has rarely been studied, despite enabling us to test process-oriented variants of the two main accounts of the facilitative effect of natural frequencies: The ecological rationality account (ERA), which postulates an evolutionarily shaped ease of natural frequency automatic processing, and the nested sets account (NSA), which posits analytical processing of nested sets. In two experiments, we found that cognitive reflection abilities predicted normative performance equally well in tasks featuring whole and arbitrarily parsed objects (Experiment 1) and that cognitive abilities and thinking dispositions (analytical vs. intuitive) predicted performance with single-event probabilities, as well as natural frequencies (Experiment 2). Since these individual differences indicate that analytical processing improves Bayesian reasoning, our findings provide stronger support for the NSA than for the ERA.
Although human musical performances represent one of the most valuable achievements of mankind, the best musicians perform imperfectly. Musical rhythms are not entirely accurate and thus inevitably deviate from the ideal beat pattern. Nevertheless, computer generated perfect beat patterns are frequently devalued by listeners due to a perceived lack of human touch. Professional audio editing software therefore offers a humanizing feature which artificially generates rhythmic fluctuations. However, the built-in humanizing units are essentially random number generators producing only simple uncorrelated fluctuations. Here, for the first time, we establish long-range fluctuations as an inevitable natural companion of both simple and complex human rhythmic performances. Moreover, we demonstrate that listeners strongly prefer long-range correlated fluctuations in musical rhythms. Thus, the favorable fluctuation type for humanizing interbeat intervals coincides with the one generically inherent in human musical performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.