Background: Despite robust cholesterol lowering, cardiovascular disease risk remains increased in patients with diabetes mellitus. Consistent with this, diabetes mellitus impairs atherosclerosis regression after cholesterol lowering in humans and mice. In mice, this is attributed in part to hyperglycemia-induced monocytosis, which increases monocyte entry into plaques despite cholesterol lowering. In addition, diabetes mellitus skews plaque macrophages toward an atherogenic inflammatory M1 phenotype instead of toward the atherosclerosis-resolving M2 state typical with cholesterol lowering. Functional high-density lipoprotein (HDL), typically low in patients with diabetes mellitus, reduces monocyte precursor proliferation in murine bone marrow and has anti-inflammatory effects on human and murine macrophages. Our study aimed to test whether raising functional HDL levels in diabetic mice prevents monocytosis, reduces the quantity and inflammation of plaque macrophages, and enhances atherosclerosis regression after cholesterol lowering. Methods: Aortic arches containing plaques developed in Ldlr −/− mice were transplanted into either wild-type, diabetic wild-type, or diabetic mice transgenic for human apolipoprotein AI, which have elevated functional HDL. Recipient mice all had low levels of low-density lipoprotein cholesterol to promote plaque regression. After 2 weeks, plaques in recipient mouse aortic grafts were examined. Results: Diabetic wild-type mice had impaired atherosclerosis regression, which was normalized by raising HDL levels. This benefit was linked to suppressed hyperglycemia-driven myelopoiesis, monocytosis, and neutrophilia. Increased HDL improved cholesterol efflux from bone marrow progenitors, suppressing their proliferation and monocyte and neutrophil production capacity. In addition to reducing circulating monocytes available for recruitment into plaques, in the diabetic milieu, HDL suppressed the general recruitability of monocytes to inflammatory sites and promoted plaque macrophage polarization to the M2, atherosclerosis-resolving state. There was also a decrease in plaque neutrophil extracellular traps, which are atherogenic and increased by diabetes mellitus. Conclusions: Raising apolipoprotein AI and functional levels of HDL promotes multiple favorable changes in the production of monocytes and neutrophils and in the inflammatory environment of atherosclerotic plaques of diabetic mice after cholesterol lowering and may represent a novel approach to reduce cardiovascular disease risk in people with diabetes mellitus.
ObjectiveLow to moderate inorganic arsenic (iAs) exposure is independently associated with cardiovascular disease (CVD), particularly for patients with diabetes mellitus (DM). The mechanism of increased CVD risk from iAs exposure in DM has not been adequately characterized. We evaluated whether increasing concentrations of glucose enhance the effects of iAs on platelet and megakaryocyte activity, key steps in atherothrombosis.MethodsHealthy donor whole blood was prepared in a standard fashion and incubated with sodium arsenite in a range from 0 to 10 µM. iAs-induced platelet activation was assessed by platelet receptor CD62P (P-selectin) expression and monocyte-platelet and leukocyte-platelet aggregation (MPA and LPA, respectively) in the presence of increasing sodium arsenite and glucose concentrations. Megakaryocyte (Meg-01) cell adhesion and gene expression was assessed after incubation with or without iAs and increasing concentrations of d-glucose.ResultsPlatelet activity markers increased significantly with 10 vs. 0 µM iAs (P < 0.05 for all) and with higher d-glucose concentrations. Platelet activity increased significantly following co incubation of 1 and 5 µM iAs concentrations with hyperglycemic d-glucose (P < 0.01 for both) but not after incubation with euglycemic d-glucose. Megakaryocyte adhesion was more pronounced after co incubation with iAs and hyperglycemic than euglycemic d-glucose, while gene expression increased significantly to iAs only after co incubation with hyperglycemic d-glucose.ConclusionWe demonstrate that glucose concentrations common in DM potentiate the effect of inorganic arsenic exposure on markers of platelet and megakaryocyte activity. Our results support recent observational cohort data that DM enhances the vasculotoxic effects of arsenic exposure, and suggest that activation of the platelet-megakaryocyte hemostatic axis is a pathway through which inorganic arsenic confers atherothrombotic risk, particularly for patients with DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.