When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration.
Somatostatin (SST) is a well-known neuropeptide that is expressed throughout the brain. In the cortex, SST is expressed in a subset of GABAergic neurons and is known as a protein marker of inhibitory interneurons. Recent studies have identified the key functions of SST in modulating cortical circuits in the brain and cognitive function. Furthermore, reduced expression of SST is a hallmark of various neurological disorders, including Alzheimer’s disease and depression. In this review, we summarize the current knowledge on SST expression and function in the brain. In particular, we describe the physiological roles of SST-positive interneurons in the cortex. We further describe the causal relationship between pathophysiological changes in SST function and various neurological disorders, such as Alzheimer’s disease. Finally, we discuss potential treatments and possibility of novel drug developments for neurological disorders based on the current knowledge on the function of SST and SST analogs in the brain derived from experimental and clinical studies.
Autotrophic conversion of CO2 to value-added biochemicals has received considerable attention as a sustainable route to replace fossil fuels. Particularly, anaerobic acetogenic bacteria are naturally capable of reducing CO2 or CO to various metabolites. To fully utilize their biosynthetic potential, an understanding of acetogenesis-related genes and their regulatory elements is required. Here, we completed the genome sequence of the syngas fermenting Eubacterium limosum ATCC 8486 and determined its transcription start sites (TSS). We constructed a 4.4 Mb long circular genome with a GC content of 47.2% and 4,090 protein encoding genes. To understand the transcriptional and translational regulation, the primary transcriptome was augmented, identifying 1,458 TSSs containing a high pyrimidine (T/C) and purine nucleotide (A/G) content at the −1 and +1 position, respectively, along with 1,253 5′-untranslated regions, and principal promoter elements such as −10 (TATAAT) and −35 (TTGACA), and Shine-Dalgarno motifs (GGAGR). Further analysis revealed 93 non-coding RNAs, including one for potential transcriptional regulation of the hydrogenase complex via interaction with molybdenum or tungsten cofactors, which in turn controls formate dehydrogenase activity of the initial step of Wood-Ljungdahl pathway. Our results provide comprehensive genomic information for strain engineering to enhance the syngas fermenting capacity of acetogenic bacteria.
Eubacterium limosum is one of the important bacteria in C 1 feedstock utilization as well as in human gut microbiota. Although E. limosum has recently garnered much attention and investigation on a genome-wide scale, a bottleneck for systematic engineering in E. limosum is the lack of available genetic tools and an efficient genome editing platform. To overcome this limitation, we here report expanded genetic tools and the CRISPR-Cas9 system. We have developed an inducible promoter system that enables implementation of the CRISPR-Cas9 system to precisely manipulate target genes of the Wood-Ljungdahl pathway with 100% efficiency. Furthermore, we exploited the effectiveness of CRISPR interference to reduce the expression of target genes, exhibiting substantial repression of several genes in the Wood-Ljungdahl pathway and fructose-PTS system. These expanded genetic tools and CRISPR-Cas9 system comprise powerful and widely applicable genetic tools to accelerate functional genomic study and genome engineering in E. limosum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.