Whole-cell computational models aim to predict cellular phenotypes from genotype by representing the entire genome, the structure and concentration of each molecular species, each molecular interaction, and the extracellular environment. Whole-cell models have great potential to transform bioscience, bioengineering, and medicine. However, numerous challenges remain to achieve wholecell models. Nevertheless, researchers are beginning to leverage recent progress in measurement technology, bioinformatics, data sharing, rule-based modeling, and multi-algorithmic simulation to build the first whole-cell models. We anticipate that ongoing efforts to develop scalable whole-cell modeling tools will enable dramatically more comprehensive and more accurate models, including models of human cells. IntroductionWhole-cell (WC) computational models aim to predict cellular phenotypes from genotype and the environment by representing the function of each gene, gene product, and metabolite [1]. WC models could unify our understanding of cell biology and enable researchers to perform in silico experiments with complete control, scope, and resolution [2,3]. WC models could also help bioengineers rationally design microorganisms that can produce useful chemicals and act as biosensors, and help physicians design personalized therapies tailored to each patient's genome.
Whole-cell dynamical models of human cells are a central goal of systems biology. Such models could help researchers understand cell biology and help physicians treat disease. Despite significant challenges, we believe that human whole-cell models are rapidly becoming feasible. To develop a plan for achieving human whole-cell models, we analyzed the existing models of individual cellular pathways, surveyed the biomodeling community, and reflected on our experience developing whole-cell models of bacteria. Based on these analyses, we propose a plan for a project, termed the , to achieve human whole-cell models. The foundations of the plan include technology development, standards development, and interdisciplinary collaboration.
Whole-cell models of human cells are a central goal of systems biology. Such models could help researchers understand cell biology and help physicians treat disease. Despite significant challenges, we believe that human whole-cell models are rapidly becoming feasible. To develop a plan for achieving human whole-cell models, we analyzed the existing models of individual cellular pathways, surveyed the biomodeling community, and reflected on our experience developing whole-cell models of bacteria. Based on these analyses, we propose a plan for a project, termed the Human Whole-Cell Modeling Project, to achieve human whole-cell models. The foundations of the plan include technology development, standards development, and interdisciplinary collaboration.
Integrative research about multiple biochemical subsystems has significant potential to help advance biology, bioengineering and medicine. However, it is difficult to obtain the diverse data needed for integrative research. To facilitate biochemical research, we developed Datanator (https://datanator.info), an integrated database and set of tools for finding clouds of multiple types of molecular data about specific molecules and reactions in specific organisms and environments, as well as data about chemically-similar molecules and reactions in phylogenetically-similar organisms in similar environments. Currently, Datanator includes metabolite concentrations, RNA modifications and half-lives, protein abundances and modifications, and reaction rate constants about a broad range of organisms. Going forward, we aim to launch a community initiative to curate additional data. Datanator also provides tools for filtering, visualizing and exporting these data clouds. We believe that Datanator can facilitate a wide range of research from integrative mechanistic models, such as whole-cell models, to comparative data-driven analyses of multiple organisms.
Integrative research about multiple biochemical subsystems has significant potential to help advance biology, bioengineering, and medicine. However, it is difficult to obtain the diverse data needed for integrative research. To facilitate biochemical research, we developed Datanator (https://datanator.info), an integrated database and set of tools for finding clouds of multiple types of molecular data about specific molecules and reactions in specific organisms and environments, as well as data about chemically-similar molecules and reactions in phylogenetically-similar organisms in similar environments. Currently, Datanator includes metabolite concentrations, RNA modifications and half-lives, protein abundances and modifications, and reaction rate constants about a broad range of organisms. Going forward, we aim to launch a community initiative to curate additional data. Datanator also provides tools for filtering, visualizing, and exporting these data clouds. We believe that Datanator can facilitate a wide range of research from integrative mechanistic models, such as whole-cell models, to comparative data-driven analyses of multiple organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.