Mast cells are found resident in tissues throughout the body, particularly in association with structures such as blood vessels and nerves, and in proximity to surfaces that interface the external environment. Mast cells are bone marrow-derived and particularly depend upon stem cell factor for their survival. Mast cells express a variety of phenotypic features within tissues as determined by the local environment. Withdrawal of required growth factors results in mast cell apoptosis. Mast cells appear to be highly engineered cells with multiple critical biological functions. They may be activated by a number of stimuli that are both Fc epsilon RI dependent and Fc epsilon RI independent. Activation through various receptors leads to distinct signaling pathways. After activation, mast cells may immediately extrude granule-associated mediators and generate lipid-derived substances that induce immediate allergic inflammation. Mast cell activation may also be followed by the synthesis of chemokines and cytokines. Cytokine and chemokine secretion, which occurs hours later, may contribute to chronic inflammation. Biological functions of mast cells appear to include a role in innate immunity, involvement in host defense mechanisms against parasitic infestations, immunomodulation of the immune system, and tissue repair and angiogenesis.
Mast cells are known to be the main effector cells in the elicitation of the IgE-mediated allergic response. The specific location of mast cells within tissues that interface the external environment, and the extent of their functional capacity, including the ability to phagocytose and to produce and secrete a wide spectrum of mediators, have led investigators to propose a potential role for mast cells in innate immune responses. Certain microorganisms have been found to interact either directly or indirectly with mast cells. This interaction results in mast cell activation and mediator release which elicit an inflammatory response or direct killing leading to bacterial clearance. The in vivo relevance of these in vitro observations has been demonstrated by the use of complement-deficient and/or mast cell-deficient and mast cell-reconstituted mice. In thus has been shown that both C3 and mast cell- and tumor necrosis factor-alpha-dependent recruitment of circulating leukocytes with bactericidal properties are crucial to a full response in certain models of acute infection. Modulation of mast cell numbers in vivo was also found to affect the host response against bacterial infection. Thus, mast cells do have a role in innate immunity in defined animal models of bacterial infection. Whether mast cells participate in innate immune responses in the protection of the human host against bacteria remains to be determined.
Mast cells, essential effector cells in allergic inflammation, have been found to be activated in T cell-mediated inflammatory processes in accordance with their residence in close physical proximity to T cells. We have recently reported that mast cells release granule-associated mediators and TNF-α upon direct contact with activated T cells. This data suggested an unrecognized activation pathway, where mast cells may be activated during T cell-mediated inflammation. Herein, we show that this cell-cell contact results in the release of matrix metalloproteinase (MMP)-9 and the MMP inhibitor tissue inhibitor of metalloproteinase 1 from HMC-1 human mast cells or from mature peripheral blood-derived human mast cells. The expression and release of these mediators, as well as of β-hexosaminidase and several cytokines, were also induced when mast cells were incubated with cell membranes isolated from activated, but not resting, T cells. Subcellular fractionation revealed that the mature form of MMP-9 cofractionated with histamine and tryptase, indicating its localization within the secretory granules. MMP-9 release was first detected at 6 h and peaked at 22 h of incubation with activated T cell membranes, while TNF-α release peaked after only 6 h. Anti-TNF-α mAb inhibited the T cell membrane-induced MMP-9 release, indicating a possible autocrine regulation of MMP release by mast cell TNF-α. This cascade of events, whereby mast cells are activated by T cells to release cytokines and MMP-9, which are known to be essential for leukocyte extravasation and recruitment to affected sites, points to an important immunoregulatory function of mast cells within the context of T cell-mediated inflammatory processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.