Abstract:The essentials of the taxonomy and cytology of Radiolaria at the order level are summarized from approximately 110 papers. Living Radiolaria comprise representatives of the following orders: Acantharia, Collodaria, Spumellaria, cyrtid Nassellaria, spyrid Nassellaria and Taxopodia (ϭSticholonche). This analysis is based on the most recent molecular biological and fossil data. Phaeodaria, which used to belong to the Radiolaria, belong to the Cercozoa now. Heliozoa are closer to the Cercozoa than to the Alveolata or Radiolaria. A molecular phylogenetic analysis indicates that Polycystina (including Collodaria, Spumellaria and Nassellaria) should not be treated as a monophyletic group."Polycystine" Radiolaria are characterized by the presence of axopodia, a capsular wall, and a fusule. The endoplasm consists of the Golgi bodies, mitochondria, and other organelles, whereas the ectoplasm is an alveolated reticulum with food, digestive, and perialgal vacuoles, suggesting zonal specialization. The Acantharia are characterized by the presence of a periplasmic cortex with myoneme, acting as a motile contractile plasmalemma, rather than a capsular wall. Taxopodia have thick axopodia and a thick nuclear wall instead of a capsular wall. Characteristic protoplasmic structures such as an intracapsular axopodial system and nucleus are found in "polycystine" Radiolaria, but these structures do not seem to reflect phylogenetic relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.