Nematic liquid crystals and smectic liquid crystals can be infiltrated into a three-dimensional periodic array of interconnected nanosize voids in opal films prepared by sedimentation of SiO2 spheres of various diameters. The optical stop band in the transmission spectra of opals shifts drastically by the infiltration of liquid crystals. The stop band is also found to shift at the phase transition points with changing temperature. This effect enables the tuning of optical properties of opals as a prototype tunable photonic crystal. This phenomenon can also be used as a measurement method for the refractive index.
We report the observation of inhibited spontaneous emission of organic dye rhodamine 6G infiltrated in a polymer replica of synthetic opal as a photonic crystal. The morphology-dependent resonances, superimposed on the broadband emission of rhodamine 6G due to spherical wavelength-sized microcavity enhancement of dye emission, have also been observed.
Spectral narrowing of photoluminescence (PL) and evolution of sharp emission lines upon optical excitation have been observed in opals made of SiO2 spheres infiltrated with conducting polymers such as OOPPV and MDDOPPV and also fluorescent dyes such as rhodamine 6G, NK-3483, and coumarin 120. Their emission properties are dependent on the sort of the opal and the solvents used for infiltration. With increasing optical excitation intensity, spectral narrowing and evolution of sharp lines have been observed in the green opal infiltrated with OOPPV, MDDOPPV, or rhodamine 6G but not in the infiltrated red and purple opals. With a solvent having a refractive index similar to that of SiO2, the evolution of the sharp emission lines is greatly suppressed and the lines exhibit a blueshift with decreasing refractive index. In NK-3483 and coumarin 120 which show red and purple PL, respectively, evolution of sharp lines is observed when they were infiltrated in red and purple opals, respectively, but not in other opals. These results are discussed in terms of amplified spontaneous emission and multimode lasing due to optical feedback in the opal matrix with a periodic structure.
The optical stop band in the transmission spectra and the peak in the reflection spectra of opals with a three-dimensional periodic structure shift drastically upon infiltration with organic materials such as liquids, liquid crystals and conducting polymers. In these infiltrated opals, the stop band and reflection peak have been confirmed to be tunable by adjusting various conditions such as temperature and applied voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.