Sex chromosomes generally evolve from a homomorphic to heteromorphic state. Once a heteromorphic system is established, the sex chromosome system may remain stable for an extended period. Here, we show the opposite case of sex chromosome evolution from a heteromorphic to a homomorphic system in the Japanese frog Glandirana rugosa. One geographic group, Neo-ZW, has ZZ-ZW type heteromorphic sex chromosomes. We found that its western edge populations, which are geographically close to another West-Japan group with homomorphic sex chromosomes of XX-XY type, showed homozygous genotypes of sex-linked genes in both sexes. Karyologically, no heteromorphic sex chromosomes were identified. Sex-reversal experiments revealed that the males were heterogametic in sex determination. In addition, we identified another similar population around at the southwestern edge of the Neo-ZW group in the Kii Peninsula: the frogs had homomorphic sex chromosomes under male heterogamety, while shared mitochondrial haplotypes with the XY group, which is located in the east and bears heteromorphic sex chromosomes. In conclusion, our study revealed that the heteromorphic sex chromosome systems independently reversed back to or turned over to a homomorphic system around each of the western and southwestern edges of the Neo-ZW group through hybridization with the West-Japan group bearing homomorphic sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.
The Nagoya Daruma pond frog Pelophylax porosus brevipodus is distributed in western Japan and is traditionally divided into two local forms: the Okayama form in the west and the Nagoya form in the east. These two forms are genetically differentiated, but have never been defined taxonomically because their distributions are unclear to date. To complete the distributions and identify the boundary of the two forms, we genetically investigated 16 populations including eight populations located within the unexamined area. We found that the distributional boundary is located within a small area of Hyogo Prefecture where haplotypes of mitochondrial cytochrome b (cytb) and D-loop region corresponding to the two forms co-existed. On the other hand, the polymorphic site of the nuclear gene SOX3 revealed introgression over the boundary into Okayama cytb clade. These results suggest that the two forms were geographically isolated from each other in the past, and secondarily contacted and then accepted one-way introgression. As a next step of the research, taxonomic approach is expected to define the two forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.