Thoracic great vessels such as the aorta and subclavian arteries are formed through dynamic remodeling of embryonic pharyngeal arch arteries (PAAs). Previous work has shown that loss of a basic helix-loop-helix transcription factor Hey1 in mice causes abnormal 4th PAA development and lethal great vessel anomalies resembling congenital malformations in humans. However, how Hey1 mediates vascular formation remains unclear. In this study, we revealed that Hey1 in vascular endothelial cells, but not in smooth muscle cells, played essential roles for PAA development and great vessel morphogenesis in mouse embryos. Tek-Cre-mediated Hey1 deletion in endothelial cells affected endothelial tube formation and smooth muscle differentiation in embryonic 4th PAAs and resulted in interruption of the aortic arch and other great vessel malformations. Cell specificity and signal responsiveness of Hey1 expression were controlled through multiple cis-regulatory regions. We found two distal genomic regions that had enhancer activity in endothelial cells and in the pharyngeal epithelium and somites, respectively. The novel endothelial enhancer was conserved across species and was specific to large caliber arteries. Its transcriptional activity was regulated by Notch signaling in vitro and in vivo, but not by ALK1 signaling and other transcription factors implicated in endothelial cell specificity. The distal endothelial enhancer was not essential for basal Hey1 expression in mouse embryos but may likely serve for Notch-dependent transcriptional control in endothelial cells together with the proximal regulatory region. These findings help understand significance and regulation of endothelial Hey1 as a mediator of multiple signaling pathways in embryonic vascular formation.
Serum/glucocorticoid‐regulated kinase 1 (SGK1) is predominantly expressed in endothelial cells of mouse embryos, and Sgk1 null mice show embryonic lethality due to impaired vascular formation. However, how the SGK1 expression is controlled in developing vasculature remains unknown. In this study, we first identified a proximal endothelial enhancer through lacZ reporter mouse analyses. The mouse Sgk1 proximal enhancer was narrowed down to the 5’ region of the major transcription initiation site, while a human corresponding region possessed relatively weak activity. We then searched for distal enhancer candidates using in silico analyses of publicly available databases for DNase accessibility, RNA polymerase association and chromatin modification. A region approximately 500 kb distant from the human SGK1 gene was conserved in the mouse, and the mouse and human genomic fragments drove transcription restricted to embryonic endothelial cells. Minimal fragments of both proximal and distal enhancers had consensus binding elements for the ETS transcription factors, which were essential for the responsiveness to ERG, FLI1 and ETS1 proteins in luciferase assays and the endothelial lacZ reporter expression in mouse embryos. These results suggest that endothelial SGK1 expression in embryonic vasculature is maintained through at least two ETS‐regulated enhancers located in the proximal and distal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.