Because drug‐induced interstitial pneumonia (DIP) is a serious adverse drug reaction, its quantitative risk with individual medications should be taken into due consideration when selecting a medicine. We developed an algorithm to detect DIP using medical record data accumulated in a hospital. Chest computed tomography (CT) is mainly used for the diagnosis of IP, and chest X‐ray reports, KL‐6, and SP‐D values are used to support the diagnosis. The presence of IP in the reports was assessed by a method using natural language‐processing, in which IP was estimated according to the product of the likelihood ratio of characteristic keywords in each report. The sensitivity and the specificity of the method for chest CT reports were 0.92 and 0.97, while those for chest X‐ray reports were 0.83 and 1, respectively. The occurrence of DIP was estimated by the patterns of presence of IP before, during, and after the administration of the target medicine. The occurrence rate of DIP in cases administered Gefitinib; Methotrexate (MTX); Tegafur, Gimeracil, and Oteracil potassium (TS‐1); and Tegafur and Uracil (UTF) was 6.0%, 2.3%, 1.4%, and 0.7%, respectively. The estimated DIP cases were checked by having the medical records independently reviewed by medical doctors. By chart review, the positive predictive values of DIP against Gefitinib, MTX, TS‐1, and UFT were 69.2%, 44.4%, 58.6%, and 77.8%, respectively. Although the cases extracted by this method included some that did not have DIP, this method can estimate the relative risk of DIP between medicines.
Background
Medicines may cause various adverse reactions. An enormous amount of money and effort is spent investigating adverse drug events (ADEs) in clinical trials and postmarketing surveillance. Real-world data from multiple electronic medical records (EMRs) can make it easy to understand the ADEs that occur in actual patients.
Objective
In this study, we generated a patient medication history database from physician orders recorded in EMRs, which allowed the period of medication to be clearly identified.
Methods
We developed a method for detecting ADEs based on the chronological relationship between the presence of an adverse event and the medication period. To verify our method, we detected ADEs with alanine aminotransferase elevation in patients receiving aspirin, clopidogrel, and ticlopidine. The accuracy of the detection was evaluated with a chart review and by comparison with the Roussel Uclaf Causality Assessment Method (RUCAM), which is a standard method for detecting drug-induced liver injury.
Results
The calculated rates of ADE with ALT elevation in patients receiving aspirin, clopidogrel, and ticlopidine were 3.33% (868/26,059 patients), 3.70% (188/5076 patients), and 5.69% (226/3974 patients), respectively, which were in line with the rates of previous reports. We reviewed the medical records of the patients in whom ADEs were detected. Our method accurately predicted ADEs in 90% (27/30patients) treated with aspirin, 100% (9/9 patients) treated with clopidogrel, and 100% (4/4 patients) treated with ticlopidine. Only 3 ADEs that were detected by the RUCAM were not detected by our method.
Conclusions
These findings demonstrate that the present method is effective for detecting ADEs based on EMR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.