The growth-retarded (grt) mouse shows thyroid dysfunctionrelated hyporesponsiveness to TSH. Thyroid hormone is a critical regulator of metabolism in many cells; thus, derangement of thyroid function affects many organs and systems. Experiments were conducted focusing on the function of the pancreatic islets in grt mice. We showed occurrence of a fasting hyperglycemia and a decreased plasma insulin level response to a glucose load in grt mice, despite normal insulin molecules being stored in secretory granules of pancreatic islets. We also demonstrated a reduction of insulin secretion in response to glucose administration from islets of grt mice in vitro, while the insulin release in response to KCl stimulation was comparable to that in normal mice, indicating that the isolated islets from grt mice have normal ATPsensitive K C channels and postchannel activity. The mRNA expression levels of glucose transporter 2 and glucokinase in the islets of grt mice were similar to those in normal mice. Triiodothyronine administration to grt mice improved insulin secretion very slightly. On the other hand, mRNA for tyrosylprotein sulfotransferase 2 (Tpst2) was found to be expressed in the pancreatic islets of grt mice. Considering that Tpst2 is the responsible gene of grt mice, mutation of which is associated with a poor function of TSH receptor, the findings raise a possibility of involvement of factors including Tpst2 in the insulin hyposecretion in grt mice.
Growth-retarded (grt) mice exhibit congenital hypothyroidism and a characteristic growth pause followed by delayed onset of pubertal growth. This pattern of growth has never been reported in any other animal model exhibiting hypothyroidism; therefore, the growth retardation observed in grt mice is unlikely to be explained completely by the low plasma thyroid hormone levels. As growth is closely related to nutrient metabolism, we investigated the relationship between the appearance of growth retardation and glucose utilization, which is the main component of nutrient metabolism, in the peripubertal stage of grt mice. The relative weights of the organs involved in nutrient digestion and absorption were abnormal in grt mice. The intraperitoneal glucose tolerance test (IGTT) showed impaired glucose tolerance in grt mice. Moreover, this symptom appeared in parallel with the progression of growth retardation in grt mice. The impaired blood glucose levels on the IGTT in grt mice were considered to be attributable to decreased plasma insulin levels rather than to impaired insulin sensitivity. The pattern of anti-insulin antibody staining on sections of pancreatic islets from grt mice was almost the same as that in the corresponding sections from normal mice. Insulin treatment accelerated the growth of peripubertal grt mice. These findings suggest that the appearance of growth retardation in grt mice might be partially attributable to a reduction in glucose metabolism and impairment of insulin secretion during the early period of growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.