The SecD protein is one of the components that has been suggested from genetic studies to be involved in the protein secretion across the cytoplasmic membrane of Escherichia coli. We examined the effect of anti‐SecD IgG on protein secretion using spheroplasts. Inhibition of the secretion of OmpA and maltose‐binding protein (MBP) by this IgG was observed with concomitant accumulation of their precursor and mature forms in spheroplasts. This effect was specific to anti‐SecD IgG. Anti‐SecE and anti‐SecY IgGs, of which the epitopes are located at the periplasmic domains of SecE and SecY, respectively, did not interfere with the secretion. Time‐course experiments investigating the processing of proMBP and the release of MBP from spheroplasts revealed that anti‐SecD IgG interfered with the release of the translocated mature MBP. The mature form of MBP thus accumulated was sensitive to trypsin, which was externally added to spheroplasts, whereas MBP released into the medium was resistant to trypsin as the native MBP is. The precursor form of MBP accumulated in spheroplasts was also trypsin resistant. We conclude that SecD is directly involved in protein secretion and important for the release of proteins that have been translocated across the cytoplasmic membrane.
Summary Our recent analysis of gastric cancers using comparative genomic hybridization (CGH) revealed a novel high frequent copy number increase in the long arm of chromosome 20. Tumour-amplified kinase BTAK was recently cloned from breast cancers and mapped on 20q13 as a target gene for this amplification in human breast cancers. In the study presented here, we analysed BTAK copy-number and expression, and their relation to the ploidy pattern in 72 primary gastric cancers. Furthermore, wild-type BTAK and its deletion mutants were transfected to gastric cancers to examine changes in cell proliferation and DNA ploidy pattern. Evaluation of 72 unselected primary gastric cancers found BTAK amplification in 5% and overexpression in more than 50%. All four clinical samples with BTAK amplification showed aneuploidy and poor prognosis. Transfection of BTAK in near-diploid gastric cancers induced another aneuploid cell population. In contrast, the c-terminal-deleted mutant of BTAK induced no effect in DNA ploidy pattern and inhibited gastric cancer cell proliferation. These results suggest that BTAK may be involved in gastric cancer cell aneuploid formation, and is a candidate gene for the increase in the number of copies of the 20q, and thus may contribute to an increase in the malignant phenotype of gastric cancer.
Our analysis of chromosomal aberrations in primary gastric cancers using comparative genomic hybridization has revealed novel, high and frequent copy number increases in the long arm of chromosome 20, indicating that this region contains novel amplified genes involved in gastric cancer progression. AIB1, a member of the steroid receptor co-activator-1 family, has been cloned on 20q12 as a candidate target gene for this amplification in human breast cancers. In this study, we examined the numbers of AIB1 copies as well as their expression and relation to clinico-pathological features in 72 primary gastric cancers. AIB1 amplification was observed in 7% and over-expression in 40% of the specimens. AIB1 amplification always coincided with its over-expression, but several cases showed AIB1 over-expression without amplification, suggesting that expression of AIB1 is regulated not only by gene amplification but also by other mechanisms, such as transcriptional activation, in human gastric cancer. Gastric cancers with AIB1 amplification showed extensive lymph node metastases, liver metastases and poorer prognosis compared to those without amplification. Our results suggest that amplification and over-expression of AIB1 are likely to increase the number of malignant phenotypes of gastric cancers and that it can be expected to be useful as a marker of poor prognosis.
Advanced gastric cancer is often accompanied by metastasis to the peritoneum, resulting in a high mortality rate. Mechanisms involved in gastric cancer metastasis have not been fully clarified because metastasis involves multiple steps and requires a combination of altered expressions of many different genes. Thus, independent analysis of any single gene would be insufficient to understand all of the aspects of gastric cancer peritoneal dissemination. In this study, we performed a global analysis of the differential gene expression of a gastric cancer cell line established from a primary main tumour (SNU-1) and of other cell lines established from the metastasis to the peritoneal cavity (SNU-5, SNU-16, SNU-620, KATO-III and GT3TKB). The application of a high-density cDNA microarray method made it possible to analyse the expression of approximately 21 168 genes. Our examinations of SNU-5, SNU-16, SNU-620, KATO-III and GT3TKB showed that 24 genes were upregulated and 17 genes down-regulated besides expression sequence tags. The analysis revealed the following altered expression such as: (a) up-regulation of CD44 (cell adhesion), keratins 7, 8, and 14 (epitherial marker), aldehyde dehydrogenase (drug metabolism), CD9 and IP3 receptor type3 (signal transduction); (b) down-regulation of IL2 receptor g, IL4-Stat (immune response), p27 (cell cycle) and integrin b4 (adhesion) in gastric cancer cells from malignant ascites. We then analysed eight gastric cancer cell lines with Northern blot and observed preferential up-regulation and down-regulation of these selected genes in cells prone to peritoneal dissemination. Reverse transcriptase -polymerase chain reaction confirmed that several genes selected by DNA microarray were also overexpressed in clinical samples of malignant ascites. It is therefore considered that these genes may be related to the peritoneal dissemination of gastric cancers. The results of this global gene expression analysis of gastric cancer cells with peritoneal dissemination, promise to provide a new insight into the study of human gastric cancer peritoneal dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.