We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.
Plasmonic photodetectors
have many useful characteristics, such
as wavelength- or polarization-specific photodetection. Although reconfigurable
plasmonic structures have been intensively studied, reconfiguration
of the optical characteristics of a plasmonic photodetector has not
yet been reported. Here, we report a gold diffraction-grating-type
plasmonic photodetector that reconfigures its optical characteristics
with a MEMS deformable cantilever. By reconfiguring the photodetector
characteristics using an angular scan of the cantilever over −21°
to 21°, the peak shifts of the photocurrent signal waveform are
found to depend on the wavelength over 1200∼1500 nm, which
is consistent with SPR theory. The proposed reconfigurable plasmonic
photodetector allowed us to obtain spectroscopic information on the
light in a demonstration experiment.
We present a near-infrared (NIR) spectrum measurement method using a Schottky photodetector enhanced by surface plasmon resonance (SPR). An Au grating was fabricated on an n-type silicon wafer to form a Schottky barrier and act as an SPR coupler. The resulting photodetector provides wavelength-selective photodetection depending on the SPR coupling angle. A matrix was pre-calculated to describe this characteristic. The spectrum was obtained from this matrix and the measured photocurrents at various SPR coupling angles. Light with single and multiple wavelengths was tested. Comparative measurements showed that our method is able to detect spectra with a wavelength resolution comparable to that of a commercial spectrometer.
In this paper, we proposed near-infrared spectroscopy based on a Si photodetector equipped with a gold grating and extended the measurable wavelength range to cover 1200–1600 nm by improving a spectrum derivation procedure. In the spectrum derivation, photocurrent data during alteration of the incidence angle of the measured light were converted using a responsivity matrix R, which determines the spectroscopic characteristics of the photodetector device. A generalized inverse matrix of R was used to obtain the spectrum and to fit a situation where multiple surface plasmon resonance (SPR) peaks appeared in the scanning range. When light composed of two wavelengths, 1250 nm and 1450 nm, was irradiated, the two wavelengths were distinctively discriminated using the improved method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.